

Operation Manual

Goodrive170-PV Series Solar Pump Inverter

SHENZHEN INVT ELECTRIC CO., LTD.

Contents

Contents	
1 Safety precautions	1
1.1 Safety definition	1
1.2 Warning	1
1.3 Safety guidelines	2
1.3.1 Delivery and installation	2
1.3.2 Commissioning and running	3
1.3.3 Maintenance and component replacement	3
1.3.4 Scrap treatment	4
2 Product overview	5
2.1 Unpacking inspection	5
2.2 Product nameplate	5
2.3 Model designation code	5
2.4 Product specifications	6
2.5 Product ratings	6
3 Installation guidelines	
3.1 Mechanical installation	
3.1.1 Installation environment	
3.1.2 Installation direction	
3.1.3 Installation mode	10
3.2 Standard wiring	11
3.2.1 Main circuit terminals	
3.2.2 Control circuit terminals	12
3.2.3 Input/output signal connection figure	
4 Keypad operation guidelines	
4.1 Keypad introduction	17
4.2 Keypad display	20
4.2.1 Displaying stopped-state parameters	20
4.2.2 Displaying running-state parameters	
4.2.3 Displaying fault information	
4.2.4 Editing function codes	20
4.3 Operation procedure	21
4.3.1 Modifying function codes	21
4.3.2 Setting a password for the inverter	22
4.3.3 Viewing inverter status	22
5 Commissioning guidelines	23
5.1 Check before running	23

	5.2 Trial run	23
	5.3 Parameter settings	23
	5.4 Advanced settings	23
	5.4.1 Water discharge speed PI adjustment	24
6	Function parameter list	25
	6.1 Function parameters related to control	25
	P00 group Basic functions	
	P01 group Start and stop control	28
	P02 group Parameters of motor 1	29
	P04 group V/F control	32
	P05 group Input terminals	35
	P06 group Output terminals	36
	P07 group Human-machine interface	
	P08 group Enhanced functions	44
	6.2 Function parameters special for solar pump	45
	P11 group Protection parameters	45
	P14 group Serial communication	48
	P15 group Functions special for solar inverter	49
	P17 group Status viewing	
	P18 group Status viewing functions special for solar inverters	
	P19 group Functions for voltage boost (inverter module communicates with boost mo	dule
	through RS485 communication)	
	Fault diagnosis and solution	
8	Communication protocol	
	8.1 Brief instruction to Modbus protocol	
	8.2 Application of the inverter	
	8.2.1 2-wire RS485	
	8.2.2 RTU mode	
	8.2.3 ASCII mode	
	8.3 Command code and communication data	
	8.3.1 RTU mode	
	8.3.2 ASCII mode	
	8.4 Data address definition	
	8.4.1 Function code address format rules	
	8.4.2 Description of other function addresses in Modbus	
	8.4.3 Fieldbus ratio values	
	8.4.4 Error message response	
	8.5 Read/Write operation example	
	8.5.1 Examples of reading command 03H	
	8.5.2 Examples of writing command 06H	03

8.5.3 Examples of continuous writing command10H	95
8.6 Common communication faults	97
Appendix A Options	98
A.1 Boost module	
A.2 GPRS module and monitoring app	
A.3 Cable	100
A.3.1 Powe cable	100
A.3.2 Control cable	100
A.4 Reactor	
A.5 Filter	
Appendix B Recommended solar module configuration	104
B.1 Recommended solar module configuration for solar pump inverters	104
B.2 Recommended solar module configuration for inverters with boost module	105
Appendix C Power frequency & PV switching solution	
Appendix C Power frequency & PV switching solution C.1 Solution introduction	
	106
C.1 Solution introduction	106 106
C.1 Solution introduction C.1.1 QH100-PV switching module	106 106 108
C.1 Solution introduction C.1.1 QH100-PV switching module C.1.2 Model selection reference for low-voltage apparatuses	106 106 108 109
C.1 Solution introduction C.1.1 QH100-PV switching module C.1.2 Model selection reference for low-voltage apparatuses C.2 Parameter setting method	106 106 108 109 110
C.1 Solution introduction C.1.1 QH100-PV switching module C.1.2 Model selection reference for low-voltage apparatuses C.2 Parameter setting method Appendix D Dimension drawings	
C.1 Solution introduction C.1.1 QH100-PV switching module C.1.2 Model selection reference for low-voltage apparatuses C.2 Parameter setting method Appendix D Dimension drawings D.1 External keypad structure	
C.1 Solution introduction C.1.1 QH100-PV switching module C.1.2 Model selection reference for low-voltage apparatuses C.2 Parameter setting method Appendix D Dimension drawings D.1 External keypad structure D.2 Dimensions of 0.4–4 kW models D.3 Dimensions of 5.5–500kW models	
C.1 Solution introduction C.1.1 QH100-PV switching module C.1.2 Model selection reference for low-voltage apparatuses C.2 Parameter setting method Appendix D Dimension drawings D.1 External keypad structure D.2 Dimensions of 0.4–4 kW models	
C.1 Solution introduction C.1.1 QH100-PV switching module. C.1.2 Model selection reference for low-voltage apparatuses C.2 Parameter setting method Appendix D Dimension drawings D.1 External keypad structure D.2 Dimensions of 0.4–4 kW models. D.3 Dimensions of 5.5–500kW models. Appendix E Further information	

1 Safety precautions

Read this manual carefully and follow all safety precautions before moving, installing, operating and servicing the product. Otherwise, equipment damage or physical injury or death may be caused.

We shall not be liable or responsible for any equipment damage or physical injury or death caused due to your or your customers' failure to follow the safety precautions.

1.1 Safety definition

Danger: Severe personal injury or even death can result if related requirements are not followed.

Warning: Personal injury or equipment damage can result if related requirements are not followed.

Note: Actions taken to ensure proper running.

Trained and qualified professionals: People operating the equipment must have received professional electrical and safety training and obtained the certificates, and must be familiar with all steps and requirements of equipment installing, commissioning, running and maintaining and capable to prevent any emergencies.

1.2 Warning

Warnings caution you about conditions that can result in severe injury or death and/or equipment damage and advice on how to prevent dangers. The following table lists the warning symbols in this manual.

Symbol	Name	Description	Abbreviation
A Danger	Danger	Severe personal injury or even death can result if related requirements are not followed.	
Marning Warning		Personal injury or equipment damage can result if related requirements are not followed.	
Forbid	Electrostatic discharge	PCBA board damage can result if related requirements are not followed.	

Symbol	Name	Description	Abbreviation
Hot sides	Note Hot sides	The equipment base may become hot. Do not touch it.	
Note	Note	Actions taken to ensure proper running.	Note

1.3 Safety guidelines

A	 Only trained and qualified professionals are allowed to carry out related operations. Do not perform wiring, inspection or component replacement when power supply is applied. Ensure that all the input power supplies are disconnected before wiring and inspection, and always wait for at least the time designated on the inverter or until the DC bus voltage is less than 36V. The waiting time is shown as below. 						
		Inver	ter model	Minimum waiting time			
		1PH 220V	0.4kW-2.2kW	5 minutes			
		3PH 220V	1.5kW–7.5kW	5 minutes			
		3PH 380V	0.75kW-110kW	5 minutes			
		3PH 380V	132kW-500kW	5 minutes			
	•	Do not refit the inverter unless authorized; otherwise fire, electric shock or other injury may result.					
	•	The base of the radiator may become hot during running. Do not touch to avoid hurt.					
	•	The electrical parts and components inside the inverter are electrostatic sensitive. Take measurements to prevent electrostatic discharge when performing related operations.					

1.3.1 Delivery and installation

	•	Do not install the inverter on inflammables. In addition, prevent the
		inverter from contacting or adhering to inflammables.
\wedge	•	Do not operate on the inverter if there is any damage or components loss to the inverter.
	•	Do not touch the inverter with wet items or body; otherwise, electric shock may occur.

- Select appropriate moving and installing tools to ensure a safe and normal running
 of the inverter and avoid physical injury or death. To ensure personal safety, the
 installer must take mechanical protective measures, such as wearing exposure
 shoes and working uniforms.
- Do not carry the inverter by its front cover only as the cover may fall off.
- Ensure the inverter suffers no physical impact or vibration during moving and installation.
- Installation site must be away from children and other public places.
- The leakage current of the inverter may be above 3.5mA during operation. Ground with proper techniques and ensure the grounding resistor is less than 10Ω. The conductivity of PE grounding conductor is the same as that of the phase conductor (with the same cross sectional area).
- (+) and (-) are DC power supply input terminals, R, S, and T are AC power supply terminals, while U, V and W are the output motor terminals. Connect the input power cables and motor cables correctly; otherwise, damage to the inverter may occur.

1.3.2 Commissioning and running

▲	 Cut off all power supplies connected to the inverter before terminal wiring, and wait for at least the time designated on the inverter after disconnecting the power supplies. High voltage presents inside the inverter during running. Do not carry out any operation on the inverter during running except for keypad setup. The inverter cannot be used as an "Emergency-stop device".
	 If the inverter is used to brake the motor suddenly, a mechanical braking device shall be provided.

- Do not switch on or off the input power supply of the inverter frequently.
- For inverters that have been stored for a long time, check and fix the capacitance and try pilot run first before actual application.
- Close the front cover before running the inverter; otherwise, electric shock may occur.

1.3.3 Maintenance and component replacement

	•	Only well-trained and qualified professionals are allowed to carry out
Â		maintenance, inspection, and component replacement of the inverter.
<u> </u>	•	Disconnect all power supplies of the inverter before terminal wiring and
		wait for at least the designated time after disconnecting the power

•	supply. Take pro	oper m	easures	to pr	event	screws.	cables a	nd other condu	ctive
		•						maintenance	
	compon	ent rep	blaceme	nt.					

- Use proper torque to tighten screws.
- Keep the inverter and its parts and components away from combustible materials during maintenance and component replacement.
- Do not carry out any insulation voltage-endurance test on the inverter or measure the control circuit of the inverter by megameter.

1.3.4 Scrap treatment

	 There are heavy metals in the inverter. Treat with it as industrial effluent.
X	 When the life cycle ends, the product should enter the recycling system. Dispose of it separately at an appropriate collection point instead of placing it in the normal waste stream.

2 Product overview

2.1 Unpacking inspection

Check the following after receiving the product.

1. Whether the packing box is damaged or dampened.

- Whether the model identifier on the exterior surface of the packing box is consistent with the purchased model.
- Whether the interior surface of the packing box is abnormal, for example, in wet condition, or whether the enclosure of the inverter is damaged or cracked.
- Whether the inverter nameplate is consistent with the model identifier on the exterior surface of the packing box.
- Whether the accessories (including the manual and keypad) inside the packing box are complete.

2.2 Product nameplate

invt	CE 🕱
Model:GD170-004-4-PV	IP20
Power(Output):4kW	Protective class:1
. ,	0V(+10%) 13.5A 47Hz-63Hz
Output:AC 3PH 0V-400V 9.5A	0Hz-400Hz
S/N:	Made in China
Shenzhen INVT E	lectric Co.,Ltd.

Note: This is a nameplate example of a standard inverter product. The CE/IP20 marking on the top right will be marked according to actual certification conditions.

2.3 Model designation code

A model designation code contains product information. You can find the model designation code on the inverter nameplate and simplified nameplate.

Field	Field No.		Content
Abbreviation of product series	1	Abbreviation of product series	GD is short for Goodrive.
Rated power	Rated power 2		004—4kW
Voltage class ③ Voltage class		Voltage class	4: AC 3PH 380V(-15%)-440(+10%)
Code	Code ④ Industry code		PV: Photovoltaic water pump series products

2.4 Product specifications

Model	-SS2	-S2	-2	-4	
AC input voltage (V)	220(-15%)- (1F	, ,	220(-15%)–240 (+10%) (3PH)	380(-15%)–440 (+10%) (3PH)	
Max. DC voltage (V)	440	440	440	800	
Start-up voltage (V)	200	200	200	300	
Min. working voltage (V)	150	150	150	250	
Recommended DC input voltage range (V)	200–400	200–400	200–400	300–750	
Recommended MPP voltage (V)	330	330	330	550	

2.5 Product ratings

Series	Model	Rated output power (kW)	Rated input current (A)	Rated output current (A)	Max. DC input current (A)
-SS2 model 1PH	GD170-0R4-SS2-PV	0.4	6.5	4.2	9
220V	GD170-0R7-SS2-PV	0.75	9.3	7.2	9
input/output	GD170-1R5-SS2-PV	1.5	15.7	10.2	12
(0.4–2.2kW)	GD170-2R2-SS2-PV	2.2	24	14	12
	GD170-0R4-S2-PV	0.4	6.5	2.5	9
-S2 model 1PH	GD170-0R7-S2-PV	0.75	9.3	4.2	9
220V input (0.4–2.2kW)	GD170-1R5-S2-PV	1.5	15.7	7.5	12
(U.4-2.2KVV)	GD170-2R2-S2-PV	2.2	24	10	12
-2 model 3PH	GD170-1R5-2-PV	1.5	7.7	7.5	12

Series	Model	Rated output power (kW)	Rated input current (A)	Rated output current (A)	Max. DC input current (A)
220V	GD170-2R2-2-PV	2.2	11	10	12
(1.5–7.5kW)	GD170-004-2-PV	4	17	16	20
	GD170-5R5-2-PV	5.5	25	20	30
	GD170-7R5-2-PV	7.5	33	30	40
	GD170-0R7-4-PV	0.75	3.4	2.5	9
	GD170-1R5-4-PV	1.5	5.0	4.2	9
	GD170-2R2-4-PV	2.2	5.8	5.5	12
	GD170-004-4-PV	4.0	13.5	9.5	16.5
	GD170-5R5-4-PV	5.5	19.5	14	23.9
	GD170-7R5-4-PV	7.5	25	18.5	30.6
	GD170-011-4-PV	11	32	25	39.2
	GD170-015-4-PV	15	40	32	49
	GD170-018-4-PV	18.5	47	38	50
	GD170-022-4-PV	22	51	45	60
	GD170-030-4-PV	30	70	60	81
	GD170-037-4-PV	37	80	75	90
	GD170-045-4-PV	45	98	92	130
-4 model 3PH	GD170-055-4-PV	55	128	115	150
380V (0.75-	GD170-075-4-PV	75	139	150	200
500kW)	GD170-090-4-PV	90	168	180	250
	GD170-110-4-PV	110	201	215	300
	GD170-132-4-PV	132	265	260	360
	GD170-160-4-PV	160	310	305	430
	GD170-185-4-PV	185	345	340	500
	GD170-200-4-PV	200	385	380	550
	GD170-220-4-PV	220	430	425	480
	GD170-250-4-PV	250	485	480	525
	GD170-280-4-PV	280	545	530	600
	GD170-315-4-PV	315	610	600	690
	GD170-355-4-PV	355	625	650	760
	GD170-400-4-PV	400	715	720	870
	GD170-450-4-PV	450	840	820	970
	GD170-500-4-PV	500	890	860	1100

3 Installation guidelines

This chapter introduces the mechanical and electrical installations of the inverter.

3.1 Mechanical installation

3.1.1 Installation environment

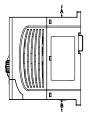
Installation environment is essential for the inverter to operate at its best in the long run.

Environment	Condition
Installation site	Indoors.
Ambient temperature	 -10°C-+50°C, and air temperature change shall be less than 0.5°C/minute. When the ambient temperature exceeds 40°C, derate 1% for every increase of 1°C. Do not use the inverter when the ambient temperature exceeds 50°C. To improve reliability, do not use the inverter in the places where the temperature changes rapidly. When the inverter is used in a closed space such as control cabinet, use a cooling fan or air conditioner for cooling, preventing the internal temperature from exceeding the temperature required. When the temperature is too low, if you want to use the inverter that has been idled for a long time, it is required to install an external

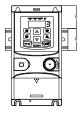
Environment	Condition							
	heating device before the use to eliminate the freeze inside the inverter. Otherwise, the inverter may be damaged.							
Humidity	The relative humidity (RH) of the air is less than 90%.Condensation is not allowed.							
Storage temperature	-40°C–70°C, with the air temperature change rate less than 1°C/minute.							
Running environment	 Install the inverter in a place: Away from electromagnetic radiation sources. Away from oil mist, corrosive gases and combustible gases. Without the chance for foreign objects such as metal powder, dust, oil and water to fall into the inverter (do not install the inverter onto combustible objects such as wood). Without radioactive substances and combustible objects. Without hazard gases and liquids. With low salt content. Without direct sunlight. 							
Pollution degree	Degree 2							
Altitude	 Lower than 1000m; When the altitude exceeds 1000m, derate 1% for every increase of 1°C. When the altitude exceeds 3000m, consult the local INVT dealer or office. 							
Vibration	Max. vibration acceleration: 5.8m/s ² (0.6g).							
Installation direction	Install the inverter vertically to ensure good heat dissipation performance.							

Note:

- The inverter must be installed in a clean and well-ventilated environment based on the IP level.
- The cooling air must be clean enough and free from corrosive gases and conductive dust.

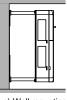

3.1.2 Installation direction

The inverter can be installed on the wall or in a cabinet.


The inverter must be installed vertically. Check the installation position according to following requirements. See Appendix D "Dimension drawings".

3.1.3 Installation mode

1. The inverters of ≤ 4kW support wall mounting and rail mounting.

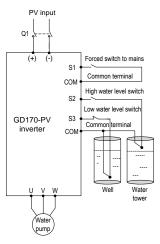


b) Rail mounting

Note: The minimum space of A and B is 100mm. H is 36.6mm and W is 35.0mm.

2. The inverters of \geq 5.5kW support wall mounting and flange mounting.

a) Wall mounting


b) Flange mounting

- Step 1 Mark the position of the installation hole. See appendix for the position of installation hole.
- Step 2 Mount the screws or bolts onto the designated position.
- Step 3 Put the inverter on the wall.
- Step 4 Tighten the fixing screws on the wall.

3.2 Standard wiring

3.2.1 Main circuit terminals

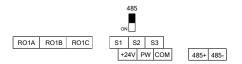
The figure below shows the standard wiring diagram of the inverter.

 The DC breaker Q1 must be installed as the protection switch for PV input.
 In parallel connection, the combination box special for PV must be used.
When the distance between the PV cell module and inverter exceeds 10 meters, Type-II surge protection devices must be configured at the DC side.
 When the distance between the pump and inverter exceeds 50 meters, it is recommended to configure output reactors. See A.4 Reactor for the output reactor model selection.
 The inverter automatically runs after being powered on. If parameters need to be set, follow the parameter setting instructions in 5 Commissioning guidelines.

Terminal symbol	Terminal name	Terminal function description
R, S, T	AC input	3PH (1PH) AC input terminals, connected to the grid Note: Use the screws equipped with the inverter for wiring.
(+), (-)	PV DC input	Input terminals of photovoltaic panels.
U, V, W	Inverter output	3PH AC output terminals, connected to the pump motor in most cases.
(J)	Safety protection grounding	Grounding terminal for safe protection; each machine must be properly grounded.

3.2.2 Control circuit terminals

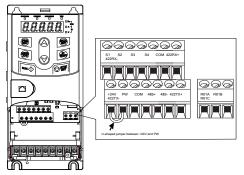
Figure 3-1 Control circuit terminal diagram for 4kW and lower inverters

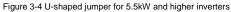

S	1	s	2	s	3	s	4	СС	ЭМ	422	RX+	422	RX-		
	+2	4V	P	W	СС	DM	48	5+	48	5-	422	TX+	422	тх-	

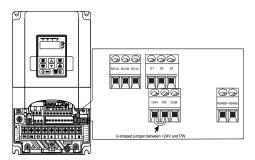
Category	Terminal symbol	Terminal name	Terminal function description	
	24V	24V power supply	Used to externally provide 24V±10% power supply. Max.	
Power supply	СОМ	Common terminal	output current: 200mA Generally used as the the working power supply of digita input/output or the externa sensor power supply	
	S1	Forcibly switches to power frequency	Terminal feature parameters: 1. Internal impedance: 3.3kΩ 2. 12–24V voltage input is	
Digital input	S2	Full-water alarm	acceptable 3. Max. input frequency: 1kHz S1: Forcibly switches to power	
	S3	Empty-water alarm	frequency (Switching-on indicates switching to power frequency, and switching-off	

Category	Terminal symbol	Terminal name	Terminal function description			
	S4	1PH/2PH algorithm switching	indicates input controlled by the keypad.) S2: It connects to the high water level switch of NO contact by default. S3: It connects to the low water level switch of NC contact by default. S4: A high electrical level corresponds to the 1PH algorithm. A low electrical level corresponds to the 2PH algorithm.			
	RS485+ RS485-	RS485 communication	RS485 communication terminals, using the Modbus protocol			
Communication	422TX+ 422TX- 422RX+ 422RX-	422 communication	Communication terminals special for the boost module.			
	RO1A (ROA)	NO contact of relay 1	1. Contact capacity: 3A/AC250V, 1A/DC30V			
	RO1B (ROB)	NC contact of relay 1	 Do not use them as high-frequency switch outputs. 			
Relay output	RO1C (ROC)	Common terminal of relay 1	During the application of power frequency & PV auto switching, the power frequency input contactor coil is controlled by the NC contact of the relay.			

Figure 3-2 Control circuit terminal diagram for 5.5kW and higher inverters


Note: The rectangular black mark indicates the shorting cap or DIP switch ex-factory selection position.


Category	Terminal symbol	Terminal name	Terminal function description
Upper	485+	485	RS485 communication terminals,
communication	485-	communication	using the Modbus protocol
	S1		1. Internal impedance: 3.3kΩ
	S2		2. 12–30V voltage input is available
Digital	S3	Digital input	 The terminal is the dual-direction input terminal Max. input frequency: 1kHz
input/output	PW	Digital working power	External digital power input terminal Power supply range: 12–30V
	СОМ	Digital output	Common terminal of open collector output
	+24V		Used to externally provide 24V±10%
24V power supply	СОМ	24V power supply	power supply. Max. output current: 200mA Generally used as the the working power supply of digital input/output or the external sensor power supply
	RO1A	Relay 1 NO contact	RO1 output; RO1A: NO; RO1B: NC;
Relay output	RO1B	Relay 1 NC contact	RO1C: common Contact capacity: 3A/AC250V ,
	RO1C	Relay 1 common contact	1A/DC30V


3.2.3 Input/output signal connection figure

You can select the NPN/PNP mode and internal/external power through the U-shaped jumper. NPN internal mode is adopted by default.

Figure 3-3 U-shaped jumper for 4kW and lower inverters

If input signal comes from NPN transistors, set the U-shaped jumper based on the power used according to the following figure.

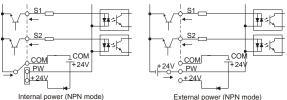
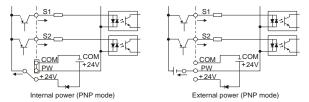



Figure 3-5 NPN mode

If input signal comes from PNP transistors, set the U-shaped jumper based on the power used according to the following figure.

Figure 3-6 PNP mode

4 Keypad operation guidelines

4.1 Keypad introduction

The keypad is used to control the inverter, read inverter status, and set parameters. If you need to install the keypad on another position rather than on the inverter, use a keypad extension cable with a standard RJ45 crystal head.

Figure 4-1 Keypad diagram for inverters of ≤ 4kW

Figure 4-2 Keypad diagram for inverters of ≥ 5.5kW

0.0.0.0.0
3 2
PRG ESC DATA ENT

Note: The inverter models of $380V \le 4kW$ support an optional external keypad, and the keypad of inverter models of $380V \ge 5.5kW$ can be installed on another device.

No.	Item		Description	
		RUN/TUNE	Inverter running status Off: The inverter is stop Blinking: The inverter is On: The inverter is runn	oped. s autotuning parameters.
		FWD/REV	Forward or reverse run Off: The inverter is runr On: The inverter is runr	ning forward.
1	Status indicator	LOCAL/REMOT	through the keypad, ter	trolled through remote
		Unit displayed currently		
		0	Hz RPM	Frequency unit Rotation speed unit
2	Unit		A	Current unit
	indicator	1	%	Percentage
		0	V	Voltage unit

No.	Item		Description							
		•	Five-digit LED displays various monitoring data and alarm codes such as the frequency setting and output frequency.							
		Display	Means	Disp	olay	Means	Display	Means	Display	Means
		0	0	1		1	2	2	3	3
	Digital	4	4	5	5	5	6	6	7	7
3	display	8	8	g)	9	а	А	b	В
	zone	С	С	c	ł	D	е	ш	f	F
		h	Н	i		-	Ι	L	8	Ν
		n	n	Č.	5	0	р	Р	r	r
		s	S	t		t	u	U	v	v
		10		-		-				
4	Keys		Programi key Confirma key UP ke Down k Right-shi key	ation ey key	confirm the setting of a parameter. y Press it to increase data or move upward. ey Press it to decrease data or move downward. Press it to select display parameters rightward				de or vard. tward in r running	
		O STOP Rat	Stop/ Reset key		for control. Press it to stop the inverter that is running. The function of this key is restricted by <u>P07.04</u> . In fault alarm state, this key can be used for reset in any control modes. The function of this key is determined by P07.02.					
5	Keypad interface	External I external k		terfac				valid, the	e local ke	ypad and

4.2 Keypad display

The inverter keypad displays information such as the stopped-state parameters, running-state parameters, and fault status, and allows you to modify function codes.

4.2.1 Displaying stopped-state parameters

When the inverter is in stopped state, the keypad displays stopped-state parameters, as shown in Figure 4-3.

When the inverter is in stopped state, the keypad displays 4 stopped-state parameters, including set frequency, bus voltage, input terminal status, and output terminal status. You can press >>/SHIFT to shift parameters.

4.2.2 Displaying running-state parameters

After receiving a valid running command, the inverter enters the running state, and the keypad displays running-state parameters, with the **RUN/TUNE** indicator on. The on/off state of the **FWD/REV** indicator is determined by the actual running direction, as shown in Figure 4-3.

In the running state, there are 6 parameters that can be displayed. There are: running frequency, set frequency, bus voltage, output voltage, output current, and rotational speed. You can press the >/SHIFT key to shift parameters.

4.2.3 Displaying fault information

After detecting a fault signal, the inverter enters the fault alarm state immediately, the fault code blinks on the keypad, and the $\boxed{\text{TRIP}}$ indicator is on. You can perform fault reset by using the $\boxed{\text{STOP/RST}}$ key, control terminals, or communication commands.

If the fault persists, the fault code is continuously displayed.

4.2.4 Editing function codes

You can press the <u>PRG/ESC</u> key to enter the editing mode in stopped, running, or fault alarm state (if a user password is used, see the description of P07.00). The editing mode contains two levels of menus in the following sequence: Function code group or function code number \rightarrow Function code setting. You can press the <u>DATA/ENT</u> key to enter the function parameter display interface. In the function parameter display interface, you can press the <u>DATA/ENT</u> key to exit the parameter display interface.

Figure 4-3 Status display

4.3 Operation procedure

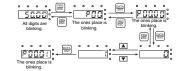
You can operate the inverter by using the keypad. For details about function code descriptions, see the function code list.

4.3.1 Modifying function codes

The inverter provides three levels of menus, including:

- Function code group number (level-1 menu)
- Function code number (level-2 menu)
- · Function code setting (level-3 menu)

Note: When performing operations on the level-3 menu, you can press the <u>PRG/ESC</u> or <u>DATA/ENT</u> key to return to the level-2 menu. If you press the <u>DATA/ENT</u> key, the set value of the parameter is saved to the control board first, and then the level-2 menu is returned, displaying the next function code. If you press the <u>PRG/ESC</u> key, the level-2 menu is returned directly, without saving the set value of the parameter, and the current function code is displayed.

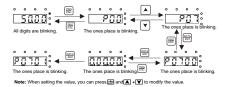

If you enter the level-3 menu but the parameter does not have a digit blinking, the parameter cannot be modified due to either of the following reasons:

• It is read only. Read-only parameters include actual detection parameters and running record parameters.

• It cannot be modified in running state and can be modified only in stopped state.

Example: Change the value of P00.01 from 0 to 1.

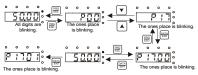
Figure 4-4 Modifying a parameter


Note: When setting the value, you can press and A+V to modify the value.

4.3.2 Setting a password for the inverter

The inverter provides password protection function to users. Set P07.00 to gain the password and the password protection becomes effective 1 minute later after retreating from the function code editing state. Press **PRG/ESC** again to the function code editing state, "0.0.0.0.0" will be displayed. Unless using the correct password, you cannot enter it.

To disable the password protection function, you need only to set P07.00 to 0.


Figure 4-5 Setting a password

4.3.3 Viewing inverter status

The inverter provides group P17 for status viewing. You can enter group P17 for viewing.

Figure 4-6 Viewing a parameter

Note: When setting the value, you can press and A To modify the value.

5 Commissioning guidelines

<u>^</u>	 Cut off all power supplies connected to the inverter before terminal wiring, and wait for at least the time designated on the inverter after disconnecting the power supplies. High voltage presents inside the inverter during running. Do not carry out any operation on the inverter during running except for keypad setup. By default, the inverter runs automatically after being powered on. If you need to set parameters, comply with the procedure described in this chapter.
----------	---

5.1 Check before running

Ensure the following before powering on the inverter:

- 1. The inverter has been grounded reliably.
- 2. The wire connection is correct and reliable.
- 3. The AC/DC breaker is selected correctly.
- 4. The solar DC input voltage is within the range allowed by the inverter.
- 5. The motor type, voltage, and power match the inverter type, voltage, and power.

5.2 Trial run

Close the DC circuit breaker, and the inverter runs automatically after a delay of about 10s. Observe the water output of the pump. If the water output is normal, the trial run is successful; if the water output is small, run again after swapping the connection of any two motor wires.

5.3 Parameter settings

By default, the inverter runs automatically after being powered on. To set parameters, do as follows: If the inverter has not been powered on, power on the inverter, and press QUICK/JOG within 10s to enter the keypad-based control mode (LOCAL/REMOT off). If the inverter has been powered on (Run indicator is on), press the <u>STOP/RST</u> key to enter the parameter setting interface. After the parameters are set, turn off and turn on the inverter power.

5.4 Advanced settings

Note: The default settings of the inverter can be adapted to most working conditions, and advanced settings are not required in most cases.

5.4.1 Water discharge speed PI adjustment

If you have higher requirements on the water discharge speed, you can adjust the PI parameters (<u>P15.06–P15.10</u>) appropriately. Setting the PI parameters to larger values will result in a faster water discharge speed, but the motor frequency fluctuates greatly; conversely, setting the PI parameters to smaller values will result in a slower water discharge speed, but the motor running frequency is relatively smooth.

6 Function parameter list

"o" indicates that the value of the parameter can be modified when the inverter is in stopped or running state.

"©" indicates that the value of the parameter cannot be modified when the inverter is in running state.

"•" indicates that the value of the parameter is detected and recorded, and cannot be modified.

Note: The inverter automatically checks and constrains the modification of parameters, which helps prevent incorrect modifications.

6.1 Function parameters related to control

P00 group Basic functions

Function code	Name	Description	Default	Modify
P00.00	Speed control mode	0: SVC mode 0 No need to install encoders. Applicable to scenarios with requirements for low frequency, great torque, and high speed control accuracy. Relative to SVC mode 1, SVC mode 0 is more applicable to the scenarios requiring small power. 1: SVC mode 1 Applicable to high-performance scenarios, featuring high rotation and torque accuracy, without the need to install pulse encoders. 2: Space voltage vector control mode Applicable to scenarios without demanding requirements on control accuracy, such as fan and pump. One inverter can drive multiple motors. Note: Before using a vector control mode, enable the inverter to perform motor parameter autotuning first.	2	٥

Function code	Name	Description	Default	Modify
P00.01	Channel of running commands	Used to select the channel of running inverter control commands. The inverter control commands include the start, stop, forward run, reverse run, jog, and fault reset commands. 0: Keypad (LOCAL/REMOT off) The commands are controlled through keypad keys, such as the RUN and STOP/RST keys. In running state, you can press both RUN and STOP/RST to enable the inverter to coast to stop. 1: Terminal (LOCAL/REMOT blinking) The running commands are controlled through forward rotation, reverse rotation, forward jogging, and reverse jogging of multi-function input terminals. 2: Communication (LOCAL/REMOT) on) The running commands are controlled by the upper computer in communication mode.	1	0
P00.03	Max. output frequency	Used to set the max. output frequency of the inverter. Pay attention to this parameter because it is the foundation of the frequency setting and the speed of acceleration (ACC) and deceleration (DEC). Setting range: <u>P00.04</u> –400.00Hz	50.00Hz	O
P00.06	A frequency command selection	0: Keypad 1: Al1 (keypad panel potentiometer) 2–7: Reserved 8: Modbus communication Setting range: 0–8	0	0
P00.10	Set frequency through keypad	0.00 Hz–P00.03 (Max. output frequency)	50.00Hz	0
P00.11	ACC time 1	ACC time means the time needed if the inverter speeds up from 0Hz to the max.		0
P00.12	DEC time 1	output frequency (P00.03).	Model	0

Function code	Name	Description	Default	Modify
		DEC time means the time needed if the inverter speeds down from the max. output frequency (<u>P00.03</u>) to 0Hz. The inverter has four groups of ACC/DEC time, which can be selected by P05. The factory default ACC/DEC time of the inverter is the first group. Setting range of <u>P00.11</u> and <u>P00.12</u> : 0.0– 3600.0s	depended	
P00.13	Running direction	 0: Run at the default direction. The inverter runs in the forward direction. WD/REV is off. 1: Run at the opposite direction. The inverter runs in the reverse direction. WD/REV is on. Modify P00.13 to shift the rotation direction of the motor. This effect equals to the shifting the rotation direction by adjusting either two of the motor lines (U, V and W). The motor rotation direction can be changed by QUICK/JOG on the keypad. For details, refer to parameter P07.02. Note: When the parameter is restored to the default value, the motor's running direction is restored to the default one. Exercise caution before using this function if the change of motor rotation direction is disallowed after commissioning. Do not change the setting of the parameter because reverse running is not allowed in water pump application scenarios. 2: Disable reverse running. It can be used in some special scenarios where reverse running is disallowed. 	0	0

Function code	Name	Description	Default	Modify
P00.14	Carrier frequency setting	1.0–15.0kHz	Model depended	0
P00.15	Motor parameter autotuning	0: No operation 1: Rotary autotuning Comprehensive motor parameter autotuning. It is recommended to use rotating autotuning when high control accuracy is needed. 2: Static autotuning 1 Used in scenarios where the motor cannot be disconnected from load. 3: Static autotuning 2 Empty-load current and mutual inductance are not autotuned.	0	Ø
P00.18	Function parameter restore	 0: No operation 1: Restore default values 2: Clear fault records Note: After the selected operation is performed, the function code is automatically restored to 0. Restoring the default values may delete the user password. Exercise caution before using this function. 	0	0

P01 group Start and stop control

Function code	Name	Description	Default	Modify
P01.08	Stop mode	0: Decelerate to stop. When a stop command takes effect, the inverter lowers output frequency based on the DEC mode and the defined DEC time; when the frequency drops to 0Hz, the inverter stops. 1: Coast to stop. When a stop command takes effect, the inverter stops output immediately. And the load coasts to stop	0	0

Function code	Name	Description	Default	Modify
		according to mechanical inertia.		
P01.18	Terminal-based running command protection at power-on	0: The terminal running command is invalid at power-on 1: The terminal running command is valid at power-on	1	0
P01.21	Power-off restart selection	0: Disable restart 1: Enable restart	1	0

P02 group Parameters of motor 1

Function code	Name	D	escription	Default	Modify
P02.00	Motor type	0: Asynchronous motor (AM) 1: Synchronous motor (SM)		0	O
P02.01	Rated power of AM	0.1–3000.0kW	Used to set AM parameters.	Model depended	O
P02.02	Rated frequency of AM	0.01Hz–P00.03	To ensure the control performance, set P02.01-P02.05	50.00Hz	0
P02.03	Rated speed of AM	1–36000rpm	correctly according to the information on the	Model depended	O
P02.04	Rated voltage of AM	0–1200V	nameplate of the AM. The inverter provides	Model depended	O
P02.05	Rated current of AM	0.8–6000.0A	the parameter autotuning function. Whether parameter autotuning can be performed properly depends on the settings of the motor nameplate parameters. In addition, you need to configure a motor according to the standard motor configuration of the	Model depended	٥

Function code	Name	Description		Default	Modify
			inverter. If the power of the motor is greatly different from that of the standard motor configuration, the control performance of the inverter degrades significantly. Note: Resetting the rated power of the motor (<u>P02.01</u>) can initialize the parameters <u>P02.02</u> – P02.10.		
P02.06	Stator resistance of AM	0.001–65.535Ω	After motor parameter autotuning is properly performed, the values of	Model depended	0
P02.07	Rotor resistance of AM	0.001–65.535Ω	P02.06–P02.10 are automatically updated. These parameters are the benchmark parameters for high-performance vector control, directly affecting the control performance. Note: Do not modify these parameters	Model depended	0
P02.08	Leakage inductance of AM	0.1–6553.5mH		Model depended	0
P02.09	Mutual inductance of AM	0.1–6553.5mH		Model depended	0
P02.10	No-load current of AM	0.1–6553.5A		Model depended	0
P02.15	Rated power of SM	0.1–3000.0kW	Used to set SM parameters.	Model depended	0
P02.16	Rated frequency of SM	0.01Hz–P00.03 (Max. output frequency)	To ensure the control performance, set P02.15-P02.19	50.00Hz	O
P02.17	Number of pole pairs of SM	1–128	correctly according to the information on the	2	0
P02.18	Rated voltage of SM	0–1200V	nameplate of the AM. The inverter provides	Model depended	O

Function code	Name	Description		Default	Modify
P02.19	Rated current of SM	0.8–6000.0A	the parameter autotuning function. Whether parameter autotuning can be performed properly depends on the settings of the motor nameplate parameters. In addition, you need to configure a motor according to the standard motor configuration of the inverter. If the power of the motor is greatly different from that of the standard motor configuration, the control performance of the inverter degrades significantly. Note: Resetting the rated power of the motor (P02.15) can initialize the parameters <u>P02.02</u> – P02.10.	Model depended	Ø
P02.20	Stator resistance of SM	0.001–65.535Ω	After motor parameter autotuning is properly performed, the values of	Model depended	0
P02.21	Direct-axis inductance of SM	0.01–655.35Mh	P02.20–P02.23 are automatically updated. These parameters are	Model depended	0
P02.22	Quadrature-axis inductance of SM	0.01–655.35Mh	the benchmark parameters for high-performance vector	Model depended	0
P02.23	Counter-emf of SM	0–10000	control, directly affecting the control performance.	300	0

Function code	Name	Description	Default	Modify
	Name Motor overload protection coefficient	Description Note: Do not modify these parameters unless it is necessary. Motor overload multiples M = lout/(In'K) In is rated motor current, lout is VFD output current, and K is motor overload protection coefficient. A smaller value of K indicates a bigger value of M. When M=116%, protection is performed after motor overload lasts for 1 hour; when M=150%, protection is performed after motor overload lasts for 5 minutes; when M=180%, protection is performed after motor overload lasts for 60 seconds; and when M≥ 400%, protection is performed immediately. Image: Description of the time t (min) eo	Default	O
		Times of motor 116% 150% 180% 200% Setting range: 20.0%–120.0%		

P04 group V/F control

Function code	Name	Description	Default	Modify
P04.00	V/F curve setting	This group of function code defines the V/F curve of motor 1 to meet the needs of different loads. 0: Straight-line V/F curve, applicable to constant torque loads		0

Function code	Name	Description	Default	Modify
		1: Reserved 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7) 4: Torque-down V/F curve (power of 2.0) Curves 2–4 are applicable to the torque loads such as fans and water pumps. You can adjust according to the characteristics of the loads to achieve best performance. 5: Reserved Note: In the following figure, V _b is the motor rated voltage and f _b is the motor rated frequency. V _b Output trading V _b Torque step-down V/F curve (1.3 order) Torque step-down V/F curve (2.0 order) Guptar trade to the step of the curve (2.0 order) Curve to the step of the curve (2.0 order)		
P04.01	Torque boost	In order to compensate for low-frequency	2.0%	0
P04.02	Torque boost cut-off	torque characteristics, you can make some boost compensation for the output voltage. <u>P04.01</u> is relative to the max. output voltage V_b . <u>P04.02</u> defines the percentage of cut-off frequency of manual torque boost to the rated motor frequency f_b . Torque boost con improve the low-frequency torque characteristics in space voltage vector control mode. You need to select torque boost based on the load. For example, larger load requires larger torque boost, however, if the torque boost is too large, the motor will run at over-excitation, which may cause increased output current and motor overheating, thus decreasing the efficiency. When torque boost is set to 0.0%, the inverter uses automatic torque boost.	20.0%	0

Function code	Name	Description	Default	Modify
		Torque boost cut-off threshold: Below this frequency threshold, torque boost is valid; exceeding this threshold will invalidate torque boost.		
		0.1%–10.0% Setting range of <u>P04.02</u> : 0.0% –50.0%		
P04.09	V/F slip compensation gain	Used to compensate for the motor rotating speed change caused by load change in the space voltage vector mode, and thus improve the rigidity of the mechanical characteristics of the motor. You need to calculate the rated slip frequency of the motor as follows: $\Delta f = f_b - n^* p/60$ Of which, f_b is the rated frequency of the motor, corresponding to function code P02.01. n is the rated rotating speed of the motor, 100.0% corresponds to the rated slip frequency Δf the slip frequency Δf of the motor. Setting range: 0.0–200.0%	0.0%	0
P04.10	Low-frequency oscillation control factor of motor 1	In space voltage vector control mode, the motor, especially the large-power motor, may experience current oscillation at certain frequencies, which may cause	10	0
P04.11	High-frequency oscillation control factor	unstable motor running, or even inverter overcurrent. You can adjust the two function codes properly to eliminate such	10	0

Function code	Name	Description	Default	Modify
	of motor 1	phenomenon.		
P04.12	Vibration control threshold	Setting range of P04.10 and P04.11: 0–100 Setting range of P04.12: 0.00Hz–P00.03 (Max. output frequency)		0
P04.34	Two phase control selection of single-phase motor	Ones place: Reserved Tens place: Reversal of the secondary winding (V-phase) voltage 0: Not reversed; 1: Reversed Setting range: 0x00–0x11	0x00	0
P04.35	Voltage ratio of V-phase and U-phase	0.00–2.00	1.40	0
P04.36	Reactive closed-loop KP	0–5000	50	0
P04.37	Reactive closed-loop KI	0–5000	50	0

P05 group Input terminals

Function code	Name	Description	Default	Modify
P05.01	Function of S1	0: No function 1: Run forward	42	O
P05.02	Function of S2	2: Run reversely 3: Three-wire running control	43	O
P05.03	Function of S3	4–5: Reserved 6: Coast to stop	44	O
P05.04	Function of S4	7: Reset faults 8: Pause running	45	O
P05.05	Function of S5	9: External fault input 10–35: Reserved	1	
P05.09	Function of HDI	36: Switch the running command channel to keypad37: Switch the running command channel to terminal38: Switch the running command channel to	46	0

Function code	Name	Description	Default	Modify
		communication 39: Reserved 40: Clear electricity consumption 41: Keep electricity consumption 42: Forcibly switches to power frequency (Switching-on indicates switching to power		
		frequency, and switching-off indicates input controlled by the keypad.) 43: Full-water signal 44: Empty-water signal 45: Two phase control mode of single-phase motor 46: PV digital input without the boost module (used for automatic switching) 47–63: Reserved		
P05.10	Input terminal polarity	0x000-0x018 BIT8 BIT2 BIT1 BIT0 HDI S3 S2 S1	0x000	0

P06 group Output terminals

Function code	Name	Description	Default	Modify
P06.03	RO1 output	0: Disable 1: Running 2: Running forward 3: Running reversely 4: Jogging 5: Inverter in fault 6: Frequency level detection FDT1 7: Frequency level detection FDT2 8: Frequency reached 9: Reserved 10: Upper limit frequency reached 11: Lower limit frequency reached 12: Ready for running 13: Reserved	30	0

Function code	Name	Description	Default	Modify
		14: Overload pre-alarm		
		15: Underload pre-alarm		
		16–19: Reserved		
		20: External fault is valid		
		21: Reserved		
		22: Running time reached		
		23: Modbus communication virtual terminal		
		output		
		24–63: Reserved		
		27: In weak light		
		28: Automatically switches from automatic		
		switching mode to power frequency input		
		mode		
		29: Forcibly switches to power frequency input		
		mode		
		30: Switches to PV input mode		
	RO1			
P06.10	switch-on	0.00–500.00s	10.00s	0
	delay			
	RO1			
P06.11	switch-off	0.00–500.00s	10.00s	0
	delay			

P07 group Human-machine interface

Function code	Name	Description	Default	Modify
P07.00	User password	0–65535 When you set the function code to a non-zero number, password protection is enabled. If you set the function code to 00000, the previous user password is cleared and password protection is disabled. After the user password is set and takes effect, you cannot enter the parameter menu if you enter an incorrect password. Please remember your password and	0	0

Function code	Name	Description	Default	Modify
		save it in a secure place. After you exit the function code editing interface, the password protection function is enabled within 1 minute. If password protection is enabled, "0.0.0.0.0" is displayed when you press the PRG/ESC key again to enter the function code editing interface. You need to enter the correct user password to enter the interface. Note: Restoring the default values may delete the user password. Exercise		
P07.01	Parameter copy	caution before using this function. 0-4 0: No operation 1: Upload parameters from the local address to the keypad 2: Download parameters (including motor parameters) from the keypad to the local address 3: Download parameters (excluding group P02 and P12) from the keypad to the local address 4: Download parameters (only including group P02 and P12) from the keypad to the local address 4: Download parameters (only including group P02 and P12) from the keypad to the local address Note: After any operation among 1-4 is complete, the parameter restores to 0. The upload and download functions are not applicable to group P29. The function is valid only for an external keypad that is an optional part and provides the parameter copy function.	0	0
P07.02	Function of QUICK/JOG	0: No function 1–5: Reserved 6: Switch command channels in sequence. 7: Quick commissioning	6	0

Function code	Name	Description	Default	Modify
		mode (based on non-factory parameter settings)		
P07.03	Sequence of switching running-command channels by pressing QUICK/JOG	When <u>P07.02</u> =6, set the sequence of switching running-command channels by pressing this key. 0: Keypad→Terminal→Communication 1: Keypad←→Terminal 2: Keypad←→Communication 3: Terminal←→Communication	1	0
P07.04	Stop function validity of STOP/RST	Used to specify the stop function validity of STOP/RST. For fault reset, STOP/RST is valid in any conditions. 0: Valid only for keypad control 1: Valid both for keypad and terminal control 2: Valid both for keypad and communication control 3: Valid for all control modes	3	0
P07.12	Inverter module temperature	-20.0–120.0° ℃		•
P07.13	Control board software version	1.00–655.35		•
P07.14	Local accumulative running time	0–65535h		•
P07.15	Inverter electricity consumption high-order bits	Used to display the electricity consumption of the inverter. Inverter electricity consumption =		•
P07.16	Inverter electricity consumption low-order bits	P07.15*1000 + P07.16 Setting range of P07.15: 0–65535kWh (*1000) Setting range of P07.16: 0.0–999.9kWh		•
P07.27	Present fault type	0: No fault		•
P07.28	Last fault type	1: Inverter unit U-phase protection		•
P07.29	2nd-last fault type	(OUt1)		•
P07.30	3rd-last fault type	2: Inverter unit V-phase protection		•
P07.31	4th-last fault type	(OUt2)		•

Function code	Name	Description	Default	Modify
P07.32	5th-last fault type	3: Inverter unit W-phase protection (OUt3) 4: Overcurrent during acceleration (OC1) 5: Overcurrent during deceleration (OC2) 6: Overcurrent during constant speed running (OC3) 7: Overvoltage during acceleration (OV1) 8: Overvoltage during deceleration (OV2) 9: Overvoltage during constant speed running (OV3) 10: Bus undervoltage (UV) 11: Motor overload (OL1) 12: Inverter overload (OL2) 13: Phase loss on input side (SPI) 14: Phase loss on output side (SPO) 15: Boost module overheat (OH1) 16: Inverter module overheat (OH2) 17: External fault (EF) 18: RS485 communication fault (CE) 19: Current detection fault (ItE) 20: Motor autotuning fault (tE) 21: EEPROM operation error (EEP) 22: PID feedback disconnection (PIDE) 23: Reserved 24: Running time reached (END) 25: Electronic overload (OL3) 26–31: Reserved 32: To-ground short-circuit fault 1 (ETH1) 33: To-ground short-circuit fault 2 (ETH2) 34: Speed deviation fault (STo) 36: Underload fault (LL) 61: Light-weak pre-alarm (A-LS)		•

Function code	Name	Description	Default	Modify
		62: Underload pre-alarm (A-LL)		
		63: Full-water pre-alarm (A-tF)		
		64: Empty-water pre-alarm (A-tL)		
		65: Phase loss pre-alarm (A-SPI)		
		The inverter decelerates to stop when		
		encountering the following faults:		
		(SPI): Phase loss on input side		
		(OH1): Rectifier module overheating		
		(OH2): Inverter module overheating		
		(CE): RS485 communication fault		
		(EEP): EEPROM operation error		
		(PIDE): PID feedback disconnection		
		(END): Running time reached		
		(OL3): Electronic overload		
		(LL): Underload fault		
		(tSF): Hydraulic probe damage fault		
		(E-422): 422 communication fault (boost		
		module)		
		Note: The prealarm will be not recorded		
		into the fault but can be read by Modbus.		
	Running			
P07.33	frequency at			•
	present fault			
	Ramp reference			_
P07.34	frequency at			•
	present fault			
P07.35	Output voltage at			•
	present fault			-
P07.36	Output current at			•
	present fault			
P07.37	Bus voltage at			•
	present fault			-
P07.38	Max. temperature			•
	at present fault			
	Input terminal			
P07.39	state at present			•
	fault			

Function code	Name	Description	Default	Modify
P07.40	Output terminal state at present fault			•
P07.41	Running frequency at last fault			•
P07.42	Ramp reference frequency at last fault			•
P07.43	Output voltage at last fault			•
P07.44	Output current at last fault			•
P07.45	Bus voltage at last fault			•
P07.46	Max. temperature at last fault			•
P07.47	Input terminal state at last fault			•
P07.48	Output terminal state at last fault			•
P07.49	Running frequency at 2nd-last fault			•
P07.50	Ramp reference frequency at 2nd-last fault			•
P07.51	Output voltage at 2nd-last fault			•
P07.52	Output current at 2nd-last fault			•
P07.53	Bus voltage at 2nd-last fault			•
P07.54	Max. temperature at 2nd-last fault			•
P07.55	Input terminal state at 2nd-last			•

Function code	Name	Description	Default	Modify
	fault			
P07.56	Output terminal state at 2nd-last fault			•
P07.57	6th-last fault type	0: No fault		•
P07.58	7th-last fault type	1: Inverter unit U-phase protection		•
P07.59	8th-last fault type	(OUt1)		•
P07.60	9th-last fault type	2: Inverter unit V-phase protection		•
P07.61	10th-last fault type	(OUt2) 3: Inverter unit W-phase protection		•
P07.62	11th-last fault type	(OUt3) 4: Overcurrent during acceleration (OC1)		•
P07.63	12th-last fault type	5: Overcurrent during deceleration (OC2)		•
P07.64	13th-last fault type	6: Overcurrent during constant speed running (OC3)		•
P07.65	14th-last fault type	7: Overvoltage during acceleration (OV1)		•
P07.66	15th-last fault type	8: Overvoltage during deceleration (OV2)		•
P07.67	16th-last fault type	9: Overvoltage during constant speed running (OV3) 10: Bus undervoltage (UV)		•
P07.68	17th-last fault type	11: Motor overload (OL1) 12: Inverter overload (OL2)		•
P07.69	18th-last fault type	13: Phase loss on input side (SPI) 14: Phase loss on output side (SPO)		•
P07.70	19th-last fault type	15: Boost module overheat (OH1) 16: Inverter module overheat (OH2)		•
P07.71	20th-last fault type	17: External fault (EF) 18: RS485 communication fault (CE) 19: Current detection fault (ItE) 20: Motor autotuning fault (ItE) 21: EEPROM operation error (EEP) 22: PID feedback disconnection (PIDE) 23: Reserved 24: Running time reached (END)		•

Function code	Name	Description	Default	Modify
		25: Electronic overload (OL3)		
		26–31: Reserved		
		32: To-ground short-circuit fault 1		
		(ETH1)		
		33: To-ground short-circuit fault 2		
		(ETH2)		
		34: Speed deviation fault (dEu)		
		35: Mal-adjustment fault (STo)		
		36: Underload fault (LL)		
		61: Light-weak pre-alarm (A-LS)		
		62: Underload pre-alarm (A-LL)		
		63: Full-water pre-alarm (A-tF)		
		64: Empty-water pre-alarm (A-tL)		
		65: Phase loss pre-alarm (A-SPI)		
		The inverter decelerates to stop when		
		encountering the following faults:		
		(SPI): Phase loss on input side		
		(OH1): Rectifier module overheating		
		(OH2): Inverter module overheating		
		(CE): RS485 communication fault		
		(EEP): EEPROM operation error		
		(PIDE): PID feedback disconnection		
		(END): Running time reached		
		(OL3): Electronic overload		
		(LL): Underload fault		
		(tSF): Hydraulic probe damage fault		
		(E-422): 422 communication fault (boost		
		module)		
		Note: The prealarm will be not recorded		
		into the fault but can be read by Modbus.		

P08 group Enhanced functions

Function code	Name	Description	Default	Modify
P08.28	Auto fault	0–10	5	0
	reset count			-
P08.29	Auto fault	0.1–3600.0s	10.0s	0

Function code	Name	Description	Default	Modify
	reset interval			
		0: Disable		
	Enable	1: Enable		
P08.53	hidden	Setting range: 0–1	0	0
F00.55	function	Note: This function code is not saved in	0	0
	codes	EEPROM, that is, it remains the disabled		
		state by default after power failure recovery.		

6.2 Function parameters special for solar pump

P11 group Protection parameters

Function code	Name	Description	Default	Modify
P11.00	Protection against phase loss	0x000–0x011 LED ones place: 0: Software protection against input phase loss disabled 1: Software protection against input phase loss enabled LED tens place: 0: Software protection against output phase loss disabled 1: Software protection against output phase loss enabled LED hundreds place: (Reserved)		0
P11.01	Voltage point for frequency drop at transient power-off		80.0%	0
P11.02	Frequency drop rate at sudden power-off	0.00Hz/s-P00.03 If the bus voltage drops to the sudden frequency decreasing point due to the power loss of the grid, the inverter begins to decrease the running frequency according to P11.02 to make the motor in power generation state. The regenerative power can maintain the bus voltage to	10.00Hz/s	0

Function code	Name	Description	Default	Modify
		ensure normal running of the inverter until the recovery of power. When this value is set to 0, frequency drop at power-off is disabled. When this value is not 0 and the PV is not enabled (P15.00=0), frequency drop at power-off can be enabled.		
P11.03	Overvoltage stall protection	0: Disable 1: Enable	0	0
	Overvoltage stall	110–150% (standard bus voltage) (380V)	130%	
P11.04	protection voltage	110–150% (standard bus voltage) (220V)	120%	0
P11.05	Current limit selection	0x00–0x12 Ones place: Current limit action selection 0: Invalid 1: Always valid 2: Invalid during DEC Tens place: Hardware current limit overload alarm selection 0: Valid 1: Invalid	01	0
P11.06	Automatic current limit level	50.0–200.0%	G type: 160.0% P type: 110.0%	0
P11.07	Frequency drop rate during current limit	0.00–50.00Hz/s	10.00Hz/s	0
P11.08	selection for	0x0000–0x1131 LED ones place: 0: Motor overload/underload pre-alarm, relative to rated motor current; 1: VFD overload/underload pre-alarm, relative to rated VFD current.	0x000	0

Function code	Name	Description	Default	Modify
		LED tens place: 0: The VFD continues running after overload/underload alarm; 1: The VFD continues running after underload alarm, and stops running after overload fault; 2: The VFD continues running after overload fault; 3: The VFD stops running after overload/underload fault. LED hundreds place: 0: Always detect		
P11.09	Overload pre-alarm detection level	1: Detect during constant-speed running P11.11–200%	G type: 150% P type: 110%	0
P11.10	Overload pre-alarm detection time	0.1–3600.0s	1.0s	0
P11.11	Underload pre-alarm detection level	0%–P11.09	50%	0
P11.12	Underload pre-alarm detection time	0.1–3600.0s	1.0s	0
P11.13	terminal action upon fault	0x00–0x11 LED ones place: 0: Act at undervoltage 1: Do not act at undervoltage LED tens place: 0: Act during the automatic reset period 1: Do not act during the automatic reset	0x00	0

Function code	Name	Description	Default	Modify
		period		
P11.14	Speed deviation detection value	0.0–50.0%	10.0%	0
P11.15		0.0–10.0s (0.0 indicates no speed deviation protection)	0.5s	0

P14 group Serial communication

Function code	Name	Description	Default	Modify
P14.00	Local communication address	1–247, 0 indicates a broadcast address.	1	0
P14.01	Communication baud rate	0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS 6: 57600BPS	4	0
P14.02	Data bit check	0: No check (N, 8, 1) for RTU 1: Even check (E, 8, 1) for RTU 2: Odd check (O, 8, 1) for RTU 3: No check (N, 8, 2) for RTU 4: Even check (E, 8, 2) for RTU 5: Odd check (O, 8, 2) for RTU	1	0
P14.03	Communication response delay	0–200ms	5	0
P14.04	RS485 communication timeout period	0.0 (invalid), 0.1–60.0s	0.0s	0

P15 group Functions special for solar inverter

Function code	Name	Description	Default	Modify
P15.00	Solar inverter selection	0: Disable 1: Enable The value 0 indicates solar control is invalid, and this function group is not used. The value 1 indicates solar control is valid, this function group can be modified.		Ø
P15.01	Vmpp voltage giving method	0: Voltage 1: Max. power tracking The value 0 indicates using the voltage giving method, the reference voltage is <u>P15.02</u> , and it is a fixed value. The value 1 indicates the reference voltage is given by tracking the max. power. The reference voltage keeps changing until the system becomes stable. Note: This parameter is invalid when terminal function 43 is valid.	1	Ø
P15.02	Vmpp voltage given through keypad	0.0–6553.5Vdc When <u>P15.01</u> is 0, this parameter determines the reference voltage. (During testing, the reference voltage value must be less than the PV input voltage. Otherwise, the system runs at the lower limit of frequency.) The factory value depends on the model. <u>Model Factory value</u> -4 450.0V Other 250.0V	Model depended	0
P15.03	PID control deviation limit	0.0–100.0% (100.0% corresponding to P15.02) PI adjustment is performed only when the ratio of the difference between the actual voltage and reference voltage to	0.0%	0

Function code	Name	Description	Default	Modify
		the reference voltage, which is abs		
		(Actual voltage - Reference voltage) *		
		100.0% / (Reference voltage), exceeds		
		P15.03. The default value is 0.0%.		
		abs: The absolute value is used.		
		P15.05-100.0% (100.0% corresponding		
		to <u>P00.03</u>)		
	PID output	P15.04 is used to limit the Max. value of		
P15.04	upper limit	target frequency.	100.0%	0
	frequency	100.0% corresponds to P00.03.		
		After PI adjustment, the target frequency		
		cannot exceed the upper limit.		
		0.0%-P15.04 (100.0% corresponding to		
		<u>P00.03</u>)		
	PID output	P15.05 is used to limit the Min. value of		
P15.05	lower limit	target frequency.	20.0%	0
	frequency	100.0% corresponds to P00.03.		
		After PI adjustment, the target frequency		
		cannot be less than the lower limit.		
		0.00–100.00		
		Proportional coefficient 1 of target		
P15.06	KP1	frequency.	5.00	0
		A greater value indicates stronger effect		
		and faster adjustment.		
		0.00–100.00		
P15.07	KI1	Integral coefficient 1 of target frequency	5.00	0
1 15.07	NI I	A greater value indicates stronger effect	5.00	0
		and faster adjustment.		
		0.00–100.00		
		Proportional coefficient 2 of target		
P15.08	KP2	frequency	35.00	0
		A greater value indicates stronger effect		
		and faster adjustment.		
		0.00–100.00		
P15.09	KI2	Integral coefficient 2 of target frequency	35.00	0
F15.09	r\i2	A greater value indicates stronger effect	33.00	0
		and faster adjustment.		

Function code	Name	Description	Default	Modify
P15.10	PI switchover point	0.0–6553.5Vdc When the absolute value of PV voltage minus reference voltage is greater than <u>P15.10</u> , <u>P15.08</u> and <u>P15.09</u> are used. Otherwise, <u>P15.06</u> and <u>P15.07</u> are used.	20.0V	0
P15.11	Water level control selection	0: Control through digital input The value 0 indicates the water level signal is controlled through digital input. For details, see S terminal functions 43 and 44 of P05. When the terminal input of full-water signal is valid, the system reports the full-water pre-alarm (A-tF) with a delay specified by <u>P15.14</u> and then sleeps. In full-water alarm state, the full-water signal is invalid, the system clears the full-water alarm with a delay specified by <u>P15.15</u> and then re-enters the running state. When the terminal input of empty-water signal is valid, the system reports the empty-water alarm (A-tL) with a delay specified by <u>P15.16</u> and then sleeps. In empty-water alarm state, the empty-water signal is invalid, the system clears the empty-water alarm with a delay specified by <u>P15.17</u> and then re-enters the running state. When P15.11 is set to 1, 2 or 3, the water level signal is controlled through analog input. For details, see P15.12 and P12.13.	0	Ø
P15.14	Full-water level delay	······ • • • • • • • • • • • • • • • •	5s	0
P15.15	Full-water level	0-10000s Time setting on full-water level wake-up	20s	0

Function code	Name	Description	Default	Modify
	wake-up delay	delay. (This parameter is still valid for digital full-water signal.)		
P15.16	Empty-wat er level delay	0–10000s Time setting on empty-water level delay. (This parameter is still valid for digital empty-water signal.)	5s	0
P15.17	Empty-wat er level wake-up delay	0–10000s Time setting on empty-water level wake-up delay. (This parameter is still valid for digital empty-water signal.)	20s	0
P15.18	Hydraulic probe damage	0.0–100.0% If <u>P15.18</u> is 0.0%, it indicates P15.18 is invalid. If <u>P15.18</u> is not 0.0%, when the detected water level control analog signal is greater than the value set in <u>P15.18</u> , the (tSF) fault is reported and the inverter stops.	0.0%	0
P15.19	Water pump run time in underload state	0.0–1000.0s Duration in which the water pump runs in underload state. In continuous underload condition, the underload alarm (A-LL) is reported when the run time is reached.	60.0s	0
P15.20	Current detection value at underload running	0.0%: Automatic detection on underload 0.1–100.0% The value 0.0% indicates it is determined by the underload detection mechanism of the inverter. A value rather than 0.0% indicates it is determined by <u>P15.20</u> . 100.0% corresponds to the motor rated current. When the absolute value of target frequency minus ramp frequency is less than or equal to 2.00Hz, if the actual current value at the actual frequency is continuously less than <u>P15.20</u> , the system reports the underload fault with a	0.0%	0

Function code	Name	Description	Default	Modify
		delay specified by <u>P15.19</u> . Otherwise, the system runs properly. In the non-continuous situation, the delay counter is automatically cleared.		
P15.21	Underload reset delay	0.0–6000.0s Underload reset delay. In underload state, the counting on the underload run time and that on the underload reset delay are performed synchronously. Generally, the value needs to be greater than P15.19 so that the system can report the underload alarm when the underload run time is reached and then reset can be performed when the time P15.21– P15.19 elapsed. If the value of P15.21 is the same as that of P15.19, auto reset is performed at the same time as the underload alarm is reported.	660.0s	0
P15.22	Dry pumping protection selection	0–1 0: Dry pumping judgement based on output power 1: Dry pumping judgement based on output current	0	0
P15.23	Weak-light delay	0.0–3600.0s Time setting on weak-light delay. When the output frequency is less than or equal to the PI output frequency lower limit and the delay counting is started, which reaches the weak-light delay time, the system reports the weak-light alarm (A-LS) and then sleeps. In the non-continuous situation, the delay counter is automatically cleared. Note: • When the bus voltage is lower than the undervoltage point or the PV	100.0s	0

Function code	Name	Description	Default	Modify
		 voltage is lower than 70V, the system directly reports the weak-light alarm without any delay. When <u>P15.32</u>=0, in weak-light condition, the system automatically switch to the power-frequency input mode. 		
P15.24	Weak-light wake-up delay	0.0–3600.0s Time setting on weak-light wake-up delay. If the weak-light pre-alarm is reported, when PV voltage is greater than the voltage set in P19.08, the system clears the pre-alarm with the weak-light wake-up delay and then re-enters the running state. When <u>P15.32</u> =0, if the PV voltage is greater than <u>P15.34</u> , the system switches from the power-frequency input mode to the PV input mode with the weak-light wake-up delay.	300.0s	0
P15.25	Initial actual reference voltage display	0.0–2000.0V	0	•
P15.26	Min. reference voltage in max. power tracking	0.00–1.00 Used to set the min. reference voltage in max. power tracking. Min. reference voltage in max. power tracking = (Open-circuit voltage of photovoltaic panels) * <u>P15.26</u> . Open-circuit voltage of photovoltaic panels = <u>P15.25</u> + <u>P15.28</u> Track the max. power in the range of Min. reference voltage in max. power tracking- <u>P15.27</u> . <u>P15.27</u> must be greater than the min. reference voltage.	0.50	0

Function code	Name	Description	Default	Modify
		A smaller difference between them indicates a smaller range, which means faster tracking. The voltage corresponding to the max. power must be within the range. <u>P15.26</u> and <u>P15.27</u> must be adjusted according to the site situation.		
P15.27	Max. reference voltage in max. power tracking	P15.26–P15.31 It is the max. voltage tracked when MPPT max. power tracking is valid. The factory value depends on the model. Model Factory value -4 750.0V Other 400.0V	Model depended	0
P15.28	Adjustment of initial reference voltage	80–95% Initial reference voltage = Voc*P15.28	88%	0
P15.29	Auto adjustment interval of Vmppt upper/lowe r limit	0.0–10.0s When P15.29 = 0.0, auto adjustment of Vmppt upper/lower limit is invalid. When it is not 0.0, Vmppt upper/lower limit is automatically adjusted at an interval specified by P15.29. The center after the adjustment is the actual PV voltage, and the upper/lower limit adjustment range is P15.30. That is: Max./Min. reference voltage = (Actual PV voltage \pm P15.30 This will be automatically updated to P15.26 and P15.27.	0.0s	0
P15.30	Auto adjustment range of	10.0–100.0V	30.0V	0

Function code	Name	Description	Default	Modify
	Vmppt upper/lowe r limit			
P15.31	Vmppt max. value	P15.27-6553.5V During the max. power tracking, the solar panel reference voltage upper limit will not exceed the value of P15.31. The factory value depends on the model. Model Factory value -4 750.0V Other 400.0V	Model	0
P15.32	PV input and power frequency input selection	0: Automatic switching mode 1: Forced power frequency input mode 2: Forced PV input mode If P15.32 is set to 0, the system switches between PV input and power frequency input according to the detected PV voltage and switching threshold. The keypad displays phase loss pre-alarm (A-SPI) when the mains power supply is not connected successfully. If P15.32 is set to 1, the system forcibly switches to power frequency input when the mains power supply is connected successfully. Otherwise, the system still maintains the PV input mode, and the keypad displays the prompt of forced power frequency failure (-FAF-). If P15.32 is set to 2, the system forcibly switches to PV input. Note: P15.32 is invalid when terminal input function 42 is valid.	2	Ø

Function code	Name	Description	Default	Modify
P15.33	Threshold for switching to power frequency input	0.0V— <u>P15.34</u> If PV voltage is lower than the threshold or the light is weak, it can switch to power frequency input through relay output. Note: The starting voltage of the boost module is 80V, and the mini. working voltage is 70V. If <u>P15.33</u> is set to 0, it is invalid. For inverter models without boost modules, the switching voltage is determined by the external voltage detection circuit. For inverter models with boost modules, the switching voltage is 70V.	70.0V	0
P15.34	Threshold for switching to PV input	P15.33-400.0V If PV voltage is greater than the threshold, the system can switch to PV input through relay output with the weak-light wake-up delay (P15.24). To	200.0V	0
P15.35	Rated pump flow	The pump flow is Q_N when the pump runs at the rated frequency and lift. Unit: m^3/h	0.0	0
P15.36	Rated pump lift	The pump lift is H_N when the pump runs at the rated frequency and flow. Unit: m	0.0	0
P15.37	Voltage setting at PV	When the PV voltage is less than the value of this parameter, the system reports the PV undervoltage fault.	Model depended	0

Function code	Name		De	scription		Default	Modify
	undervolta	The f	factory value	depends on the r	nodel.		
	ge point		Model	PV undervoltage point			
			-4	240V			
			Other				
			Any model with the boos module				
P15.39	Product model	to ch user facto shall 0: Mo outpu 1: Mo outpu 2: Mo outpu 3: M outpu Setti	hange model wants to use iny delivery) be set to 2. odel -SS2, 22 ut odel -S2, 220 ut odel -2, 220V ut odel -2, 380 ut odel -4, 380 ut ng range: 0–i	e is provided for is. For example, model -4 (defaul as model -2, F 20V 1PH input and V 1PH input and V 1PH input and 3 V 3PH input and 3 V 3PH input and 3 depends on the r Factory value 3 2 1 0	if the It after 215.39 d 1PH 3PH PH d 3PH	Model	Ø
P15.40	PQ curve fitting enabling	1: Er Setti	sable nable ng range: 0– ble P15.40. a	1 nd use the point		0	O

Function code	Name	Description	Default	Modify
		between P15.41 and P15.50 for PQ curve fitting calculation. In this way, the flow calculation will be more accurate. Setting range: 0.0–1000.0kW		
P15.41	Power point 1 of PQ curve	It indicates the power point corresponding to the pump input power at the 1 st point of the PQ curve. Setting range: 0.0–1000.0kW	0.0kW	0
P15.42	Power point 2 of PQ curve	It indicates the power point corresponding to the pump input power at the 2 nd point of the PQ curve. Setting range: 0.0–1000.0kW	0.0kW	0
P15.43	Power point 3 of PQ curve	It indicates the power point corresponding to the pump input power at the 3 rd point of the PQ curve. Setting range: 0.0–1000.0kW	0.0kW	0
P15.44	Power point 4 of PQ curve	It indicates the power point corresponding to the pump input power at the 4 th point of the PQ curve. Setting range: 0.0–1000.0kW	0.0kW	0
P15.45	Power point 5 of PQ curve	It indicates the power point corresponding to the pump input power at the 5 th point of the PQ curve. Setting range: 0.0–1000.0kW	0.0kW	0
P15.46	Flow point 1 of PQ curve	It indicates the flow point corresponding to the pump flow at the 1 st point of the PQ curve. Setting range: 0.0–1000.0m ³ /h	0.0m³/h	0
P15.47	Flow point 2 of PQ curve	It indicates the flow point corresponding to the pump flow at the 2 nd point of the PQ curve. Setting range: 0.0–1000.0m ³ /h	0.0m³/h	0
P15.48	Flow point 3 of PQ curve	It indicates the flow point corresponding to the pump flow at the 3 rd point of the PQ curve. Setting range: 0.0–1000.0m ³ /h	0.0m³/h	0

Function code	Name	Description	Default	Modify
P15.49	Flow point 4 of PQ curve	It indicates the flow point corresponding to the pump flow at the 4 th point of the PQ curve. Setting range: 0.0–1000.0m ³ /h	0.0m³/h	0
P15.50	Flow point 5 of PQ curve	It indicates the flow point corresponding to the pump flow at the 5 th point of the PQ curve. Setting range: 0.0–1000.0m ³ /h	0.0m³/h	0
P15.51	Efficiency of pump	This function code indicates the overall efficiency of the pump. Setting range: 0.0–100%	80%	0

P17 group Status viewing

Function code	Name	Description	Default	Modify
P17.01	Output frequency	0.00Hz–P00.03	0.00A	•
P17.03	Output voltage	0–1200V	0.00A	•
P17.04	Output current	0.0–5000.0A	0.00A	•
P17.08	Motor power	-300.0–300.0% (of the motor rated power)	0.00A	•
P17.11	DC bus voltage	0.0–2000.0V	0.00V	•
P17.12	Digital input terminal state	0000-00FF	0.00A	•
P17.13	Digital output terminal state	0000–000F	0.00A	•
P17.38	Current of the main winding	It is current of the main winding when applying capacitance-removing to control the single-phase motor. 0.00–100.00A		•

Function code	Name	Description	Default	Modify
P17.39	the secondary	It is current of the secondary winding when applying capacitance-removing to control the single-phase motor. 0.00–100.00A		•

P18 group Status viewing functions special for solar inverters

Function code	Name	Description	Default	Modify
P18.00	PV reference voltage	MPPT is performed at the inverter side. The value is given by the inverter side. 0–65535.0V	0.0V	•
P18.01	Actual PV voltage	It is transferred from the boost module or equal to bus voltage. 0–65535.0V	0.0V	•
P18.02	MPPT min. reference voltage display	The value displays the mini. voltage reference during max. power tracking. It equals to the solar cell panel open-circuit voltage multiplied <u>P15.26</u> . 0–65535.0V	0.0V	•
P18.04	Present inductive current	It is transferred from the boost module, and valid only in AC mode and invalid in PV mode.		•
P18.07	PV input power	0.00–655.35kW	0.0	•
P18.09	Previous PV voltage	0.0–6553.5V		•
P18.10	P18.10 Perice power supply display P18.10 Perice P18.10 Perice power supply power supply power supply power supply power supply potect that the system is configured with the boost module. P18.10 Perice power supply power power supply supply supply supply supply supply supply supply supply s		0x00	•

Function code	Name	Description	Default	Modify
P18.11	Actual pump flow	$\mathcal{Q} = \mathcal{Q}_N * f / f_N$ Unit: m ³ /h.		•
P18.12	Actual pump lift	$H = 0.9H_N * (f / f_N)^2$ Unit: m.	0.0m	•
P18.13	High-order bits in total pump flow	Used to display the 16 high-order bits of the total pump flow. Unit: m ³ .	0m³	•
P18.14	bits in total	Used to display the 16 low-order bits of the total pump flow. Unit: m^3 . Total pump flow = <u>P18.13</u> *65535 + <u>P18.14</u>	0.0m³	•
P18.15 Reset total pump flow and then accumulated again. After		When it is set to 1, the total pump flow can be reset. <u>P18.13</u> and <u>P18.14</u> are cleared and then accumulated again. After the resetting succeeds, <u>P18.15</u> is automatically changed to 0.		0

P19 group Functions for voltage boost (inverter module communicates with boost module through RS485 communication)

Function code	Name	Description	Default	Modify
P19.00	Boost voltage loop KP	0.000–65.535	0.500	0
P19.01	Boost voltage loop KI	0.000–65.535	0.080	0
P19.02	Boost current loop KP	0.000–65.535	0.010	0
P19.03	Boost current loop KI	0.000–65.535	0.010	0
P19.04	Output current upper limit of boost voltage loop Pl	IPI upper limit of the boost current loop		0

Function code	Name	Description	Default	Modify
P19.05	Output current lowerr limit of boost voltage loop Pl	Output lower limit of mppt voltage loop PI, lower limit of the boost current loop reference current. 0–P19.04	0.0A	0
P19.06	Bus reference voltage	This function code is used to set the reference voltage of bus voltage at PV input when the system is configured with the boost module. By default, the factory value for 220V models is 350V and the factory value for 380V models is 570V. Setting range: 300.0V–600.0V	330.0V	O
P19.07	Boost voltage loop KP1	If the difference between the bus reference voltage and actual bus voltage is greater than 20V, the boost voltage loop uses PI parameters of this group. Otherwise, the boost voltage loop uses PI parameters of the first group. Setting range: 0.000–65.535	0.500	0
P19.08	Boost voltage loop KI1	If the difference between the bus reference voltage and actual bus voltage is greater than 20V, the boost voltage loop uses PI parameters of this group. Otherwise, the boost voltage loop uses PI parameters of the first group. Setting range: 0.000–65.535	0.080	0
P19.09	Boost starting voltage	The boost circuit starts when the PV voltage reaches the startup voltage value and other starting conditions are met. 60.0–200.0	80.0V	O
P19.10	Boost software version	Once being powered, the boost module firstly sends its version information to the inverter side.	0.00	•
P19.11	Output voltage filter coefficient	0–10	0	0

Function code	Name	Description	Default	Modify
P19.14	MPPT adjustment step length	0.0–10.0V If this value is 0, the step length is set automatically and is calculated based on "average voltage/100" in the range of [2.0V,5.0V]. If this value is not 0, the step length is set to this value.		0
P19.15	MPPT adjustment time	0.0–120.0s	2.0s	0
P19.16	∆P coefficient1	0.0%–5.0% This value affects the effect of tracking from right to left, with larger values being closer to the right.	0.3%	0
P19.17	∆P coefficient2	0.0%–5.0% This value affects the effect of tracking from left to right, with larger values being closer to the right.	0.3%	0
P19.19	Fine-tune reference voltage time	0.00–60.00s When KP2/KI2 is used continuously to exceed this value, the reference voltage is slightly increased by 0.1V.		O

Note:

- The duration from when the inverter starts to when it runs at the PI output frequency lower limit is determined by the ACC time.
- Delay time counting follows the rules if multiple fault conditions are met simultaneously: For example, if all fault conditions of weak light, full water, and underload are met simultaneously, the delay time for each fault is counted independently. When the delay time of a fault is reached, the fault is reported. The delay time counting for the other two faults is kept. If the reported faults is resolved bu the conditions of the other two faults persist, the delay time counting of the other two faults continues. If a fault condition is not met during counting, the delay time of this fault is cleared.

7 Fault diagnosis and solution

Do as follows if the inverter encounters a fault:

- Check whether there is any exception on the keypad. If yes, contact the local INVT office.
- If no, check function group P07 to view the fault record parameters and understand the actual condition.
- 3. See the following table for a detailed solution and check for exceptions.
- 4. Rectify the fault or ask for help.
- 5. Ensure the fault has been rectified, perform fault reset, and run the inverter again.

Note: The numbers enclosed in square brackets such as [1], [2] and [3] in the Fault type column in the following table indicate the inverter fault type codes read through communication.

Fault code	Fault type	Possible cause	Solution
OUt1	[1] Inverter unit U-phase protection		Increase ACC time.
OUt2	[2] Inverter unit V-phase protection	-	
OUt3	[3] Inverter unit W-phase protection	 interference. Drive wires are poorly connected. To-ground short circuit occurs. 	surrounding the peripheral
OC1	[4] Overcurrent during acceleration	Acceleration or deceleration is too fast.	Increase the ACC time.Check the input power.
OC2	[5] Overcurrent during deceleration	The voltage of the grid is too low.The power of the inverter	larger power.
OC3	[6] Overcurrent during constant speed running	 is too low. The load transients or is abnormal. There is to-ground short circuit or output phase loss. There is strong external interference. 	rotation is not smooth.Check the output wiring.Check whether there is strong interference.

Fault code	Fault type	Possible cause	Solution
		 The overvoltage stall protection is not enabled. 	 The output cable is too long. For a cable longer than 100m, it is required to configure the corresponding output reactor and debug certain parameters.
OV1	[7] Overvoltage during acceleration	The input voltage is	
OV2	[8] Overvoltage during deceleration	abnormal.There is large energy feedback.	DEC time is too short or the inverter starts when the motor is rotating.
OV3	[9] Overvoltage during constant speed running	 No braking components. Dynamic brake is not enabled. 	 Install the braking components. Check the setting of related function codes.
UV	[10] Bus undervoltage	 The voltage of the grid is too low. Overvoltage stall protection is not enabled. 	 Check the grid input power; Check the settings of related function code.
OL1	[11] Motor overload	 The grid voltage is too low. The motor rated current is set incorrectly. Motor stall or load jumps violently. 	 Check the grid voltage; Reset the rated current of the motor; Check the load and adjust torque boost.
OL2	[12] Inverter overload	 Acceleration is too fast. The rotating motor is reset. The grid voltage is too low. The load is too heavy. The motor power is too small. 	 Increase the ACC time. Avoid the restarting after stop. Check the grid voltage. Select an inverter with larger power. Select a proper motor.
SPI	[13] Phase loss on the input side	 Phase loss or violent fluctuation occurred on input R, S, T. 	•···•··

Fault code	Fault type	Possible cause	Solution
SPO	[14] Phase loss on output side	 Phase loss output occurs to U, V, W (or the three phases of the load are seriously asymmetrical) 	 Check the output wiring; Check the motor and cable.
OH1	[15] Rectifier module overheating	Air duct jam or fan damage occurs.Ambient temperature is	 Dredge the vent duct or replace the fan.
OH2	[16] Inverter module overheat	 too high. The time of overload running is too long. 	Lower the ambient temperature.
EF	[17] External fault	 SI external fault input terminal action. 	 Check the external device input.
CE	[18] RS485 communication fault	 The baud rate setting is incorrect. A fault occurs to the communication wiring. The communication address is incorrect. Communication suffers from strong interference. 	 Set a proper baud rate. Check the communication interface wiring. Set a proper communication address. Replace or change the wiring to enhance the anti-interference capacity.
ltE	[19] Current detection fault	 The control board connector is in poor contact. Hall device is damaged. An exception occurs on the magnifying circuit. 	Check the connector and re-plug.Replace the Hall device.Change the main control board.
tΕ	[20] Motor autotuning fault	 The motor capacity does not match the inverter capacity. Motor parameters are not set correctly. The difference between the parameters obtained from autotuning and the standard parameters is great. Autotuning timed out. 	 Set the motor type and nameplate parameters correctly. Empty the motor load. Check the motor wiring and parameter settings.

Fault code	Fault type	Possible cause	Solution		
EEP	[21] EEPROM operation fault	 Error in reading or writing control parameters. EEPROM is damaged. 	 Press STOP/RST for reset. Change the main control board. 		
PIDE	[22] PID feedback disconnection	 PID feedback is disconnected. The PID feedback source disappears. 	 Check the PID feedback signal wires. Check the PID feedback source. 		
END	[24] Running time reached	 The actual running time of the inverter is longer than the internal set running time. 	 Ask the supplier to adjust the preset running time. 		
OL3	[25] Electronic overload fault	 The inverter reports overload pre-alarm according to the setting. 	 Check the load and overload pre-alarm threshold. 		
ETH1	[32] To-ground short-circuit fault 1	 Inverter output is short connected to the ground. 	 Check whether the motor wiring is normal. 		
ETH2	[33] To-ground short-circuit fault 2	 There is a fault in the current detection circuit. 	Replace the Hall device.Change the main control board.		
dEu	[34] Speed deviation fault	 The load is too heavy or stalled. 	 Check the load and increase the detection time if the load is normal. Check whether control parameters are set correctly. 		
STo	[35] Mal-adjustment fault	 SM control parameters are set incorrectly. Autotuned parameters are not accurate. The inverter is not connected to the motor. 	Check the load and ensure the load is normal. Check whether control parameters are set correctly. Increase the maladjustment detection time.		
LL	[36] Electronic underload fault	 The inverter reports underload pre-alarm according to the setting. 	 Check the load and overload pre-alarm threshold. 		

Fault code	Fault type	Possible cause	Solution
tSF	[37] Hydraulic probe damage fault	Hydraulic probe damage	 Replace the hydraulic probe
PINV	[38] PV reverse connection fault	PV wiring is incorrect.	 Change the wiring direction of positive and negative terminals, and perform the wiring again.
PVOC	[39] PV overcurrent	is too low.	 Increase the ACC/DEC time. Select the inverter with a larger power. Check if the load is short circuited (to-ground short circuit or line-to-line short circuit) or the rotation is not smooth.
PVOV	[40] PV overvoltage	 Input voltage of the solar cell panel is too high. Model -4 is set as another model. 	 Reduce the number of solar cell panels in series connection. Check and reset the model.
PVLV	[41] PV undervoltage	 The power of the solar cell panels in series connection is too low or it is cloudy and rainy weather. The starting current of the motor is too high. 	solar cell panels or perform the test in the normal sunlight.
E-422	[42] Fault on 422 communication with the boost module	Communication cables are in poor contact.	 Check four communication cables of 422 communication, ensuring that they are connected reliably.
ov	[43] Bus overvoltage detected on the boost side	 The sunlight changes sharply. 	 Adjust the boost PI parameters, and enlarge the values of P19.07 and P19.08.

Fault code	Fault type	Possible cause	Solution
A-LS	Weak-light pre-alarm	 The sunlight is weak or the solar panel configuration is insufficient. 	 The device will automatically run when the light is sufficient. Check whether the solar panel configuration is sufficient.
A-LL	Underload pre-alarm	 The pumping pool has no water. 	Check the pumping pool.
A-tF	Full-water pre-alarm	• The pumping pool is full	 If you have configured the full-water pre-alarm function, the device automatically stops when the pre-alarm elapsed a period of time. Otherwise, check whether terminals are wired correctly.
A-tL	Empty-water pre-alarm	 The pumping pool has no water. 	 If you have configured the empty-water pre-alarm function, the device automatically stops when the pre-alarm elapsed a period of time. Otherwise, check whether terminals are wired correctly.

8 Communication protocol

8.1 Brief instruction to Modbus protocol

Modbus protocol is a software protocol and common language which is applied in the electrical controller. With this protocol, the controller can communicate with other devices via network (the channel of signal transmission or the physical layer, such as RS485). And with this industrial standard, the controlling devices of different manufacturers can be connected to an industrial network for the convenient of being monitored.

There are two transmission modes for Modbus protocol: ASCII mode and RTU (Remote Terminal Units) mode. On one Modbus network, all devices should select same transmission mode and their basic parameters, such as baud rate, digital bit, check bit, and stopping bit should have no difference.

Modbus network is a controlling network with single-master and multiple slaves, which means that there is only one device performs as the master and the others are the slaves on one Modbus network. The master means the device which has active talking right to send message to Modbus network for the controlling and inquiring to other devices. The slave means the passive device which sends data message to the Modbus network only after receiving the controlling or inquiring message (command) form the master (response). After the master sends message, there is a period of time left for the controlled or inquired slaves to response, which ensure there is only one slave sends message to the master at a time for the avoidance of singles impact.

Generally, the user can set PC, PLC, IPC and HMI as the masters to realize central control. Setting certain device as the master is a promise other than setting by a bottom or a switch or the device has a special message format. For example, when the upper monitor is running, if the operator clicks sending command bottom, the upper monitor can send command message actively even it cannot receive the message from other devices. In this case, the upper monitor is the master. And if the designer makes the inverter send the data only after receiving the command, then the inverter is the slave.

The master can communicate with any single slave or with all slaves. For the single-visiting command, the slave should feedback a response message; for the broadcasting message from the master, the slave does not need to feedback the response message.

8.2 Application of the inverter

The inverter uses the Modbus RTU mode and the physical layer is 2-wire RS485.

8.2.1 2-wire RS485

2-wire RS485 interfaces works in half-duplex mode and send data signals in the differential transmission way, which is also referred to as balanced transmission. An RS485 interface

uses a twisted pair, in which one wire is defined as A (+), and the other B (-). Generally, if the positive electrical level between the transmission drives A and B ranges from +2 V to +6 V, the logic is "1"; and if it ranges from -2 V to -6 V, the logic is "0".

On the inverter terminal block, the 485+ terminal corresponds to A, and 485- corresponds to B.

The communication baud rate (P14.01) indicates the number of bits sent in a second, and the unit is bit/s (bps). A higher baud rate indicates faster transmission and poorer anti-interference capability. When a twisted pair of 0.56mm (24 AWG) is used, the maximum transmission distance varies according to the baud rate, as described in the following table.

Baud rate	Max. transmission distance	Baud rate	Max. transmission distance	Baud rate	Max. transmission distance	Baud rate	Max. transmission distance
2400 bps	1800m	4800 bps	1200m	9600 bps	800m	19200 bps	600m

When RS485 interfaces are used for long-distance communication, it is recommended that you use shielded cables, and use the shielding layer as the ground wires.

When there are fewer devices and the transmission distance is short, the whole network works well without terminal load resistors. The performance, however, degrades as the distance increases. Therefore, it is recommended that you use a 120Ω terminal resistor when the transmission distance is long.

8.2.1.1 When one inverter is used

Figure 8-1 is the Modbus wiring diagram for the network with one inverter and PC. Generally, PCs do not provide RS485 interfaces, and therefore you need to convert an RS232 or USB interface of a PC to an RS485 interface through a converter. Then, connect end A of the RS485 interface to the 485+ port on the terminal block of the inverter, and connect end B to the 485- port. It is recommended that you use shielded twisted pairs. When an RS232-RS485 converter is used, the cable used to connect the RS232 interface of the PC and the converter cannot be longer than 15 m. Use a short cable when possible. It is recommended that you insert the converter directly into the PC. Similarly, when a USB-RS485 converter is used, use a short cable when possible.

When the wiring is completed, select the correct port (for example, COM1 to connect to the RS232-RS485 converter) for the upper computer of the PC, and keep the settings of basic parameters such as communication baud rate and data check bit consistent with those of the inverter.

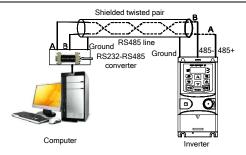


Figure 8-1 RS485 wiring diagram for the network with one inverter

8.2.1.2 When multiple inverters are used

In the network with multiple inverters, chrysanthemum connection and star connection are commonly used. According to the requirements of the RS485 industrial bus standards, all the devices need to be connected in chrysanthemum mode with one 120 Ω terminal resistor on each end, as shown in Figure 8-2.

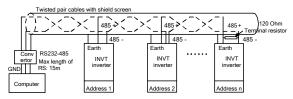


Figure 8-2 Practical application diagram of chrysanthemum connection

Figure 8-3 shows the start connection diagram. When this connection mode is adopted, the two devices that are farthest away from each other on the line must be connected with a terminal resistor (in this figure, the two devices are devices 1# and 15#).

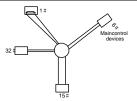


Figure 8-3 Star connection

Use shielded cables, if possible, in multi-inverter connection. The baud rates, data bit check settings, and other basic parameters of all the devices on the RS485 line must be set consistently, and addresses cannot be repeated.

8.2.2 RTU mode

8.2.2.1 RTU communication frame structure

When a controller is set to use the RTU communication mode on a Modbus network, every byte (8 bits) in the message includes 2 hexadecimal characters (each includes 4 bits). Compared with the ASCII mode, the RTU mode can transmit more data with the same baud rate.

Code system

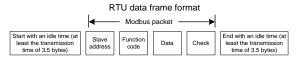
- 1 start bit
- 7 or 8 data bits; the minimum valid bit is transmitted first. Each frame domain of 8 bits includes 2 hexadecimal characters (0–9, A–F).
- 1 odd/even check bit; this bit is not provided if no check is needed.
- 1 stop bit (with check performed), or 2 bits (without check)

Error detection domain

Cyclic redundancy check (CRC)

The following table describes the data format.

11-bit character frame (Bits 1 to 8 are data bits)


Start bit	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	BIT7	BIT8	Check bit	Stop bit
-----------	------	------	------	------	------	------	------	------	-----------	----------

10-bit character frame (Bits 1 to 7 are data bits)

	Start bit	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	BIT7	Check bit	Stop bit
--	-----------	------	------	------	------	------	------	------	-----------	----------

In a character frame, only the data bits carry information. The start bit, check bit, and stop bit are used to facilitate the transmission of the data bits to the destination device. In practical applications, you must set the data bits, parity check bits, and stop bits consistently.

In RTU mode, the transmission of a new frame always starts from an idle time (the transmission time of 3.5 bytes). On a network where the transmission rate is calculated based on the baud rate, the transmission time of 3.5 bytes can be easily obtained. After the idle time ends, the data domains are transmitted in the following sequence: slave address, operation command code, data, and CRC check character. Each byte transmitted in each domain includes 2 hexadecimal characters (0–9, A–F). The network devices always monitor the communication bus. After receiving the first domain (address information), each network device identifies the byte. After the last byte is transmitted, a similar transmission interval (the transmission time of 3.5 bytes) is used to indicate that the transmission of the frame ends. Then, the transmission of a new frame starts.

The information of a frame must be transmitted in a continuous data flow. If there is an interval greater than the transmission time of 1.5 bytes before the transmission of the entire frame is complete, the receiving device deletes the incomplete information, and mistakes the subsequent byte for the address domain of a new frame. Similarly, if the transmission interval between two frames is shorter than the transmission time of 3.5 bytes, the receiving device mistakes it for the data of the last frame. The CRC check value is incorrect due to the disorder of the frames, and thus a communication fault occurs.

START (frame header)	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)		
ADDR (slave address	Communication address: 0-247 (in decimal system) (0 indicates		
domain)	the broadcast address)		
CMD (function domain)	03H: read slave parameters		
CIMD (IUnction domain)	06H: write slave parameters		
Data domain			
DATA (N-1)	Data of 2*N bytes, main content of the communication as well as		
	the core of data exchanging		
DATA (0)			
LSB of CRC CHK	Detection values CRC (16 hite)		
MSB of CRC CHK	Detection value: CRC (16 bits)		
END (frame tail)	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)		

The following table describes the standard structure of an RTU frame.

8.2.2.2 RTU communication frame error check modes

During the transmission of data, errors may occur due to various factors (such as electromagnetic interference). For example, if the sending message is a logic "1", A-B potential difference on RS485 should be 6V, but in reality, it may be -6V because of electromagnetic interference, and then the other devices take the sent message as logic "0". Without error check, the data receiving device cannot identify data errors and may make a wrong response. The wrong response may cause severe problems. Therefore, the data must be checked.

The check is implemented as follows: The transmitter calculates the to-be-transmitted data based on a specific algorithm to obtain a result, adds the result to the rear of the message, and transmits them together. After receiving the message, the receiver calculates the data based on the same algorithm to obtain a result, and compares the result with that transmitted by the transmitter. If the results are the same, the message is correct. Otherwise, the message is considered wrong.

The error check of a frame includes two parts, namely, bit check on individual bytes (that is, odd/even check using the check bit in the character frame), and whole data check (CRC check).

Bit check on individual bytes (odd/even check)

You can select the bit check mode as required, or you can choose not to perform the check, which will affect the check bit setting of each byte.

Definition of even check: Before the data is transmitted, an even check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is even, the check bit is set to "0"; and if it is odd, the check bit is set to "1".

Definition of odd check: Before the data is transmitted, an odd check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is odd, the check bit is set to "0"; and if it is even, the check bit is set to "1".

For example, the data bits to be transmitted are "11001110", including five "1". If the even check is applied, the even check bit is set to "1"; and if the odd check is applied, the odd check bit is set to "0". During the transmission of the data, the odd/even check bit is calculated and placed in the check bit of the frame. The receiving device performs the odd/even check after receiving the data. If it finds that the odd/even parity of the data is inconsistent with the preset information, it determines that a communication error occurs.

Cyclical Redundancy Check (CRC) method

A frame in the RTU format includes an error detection domain based on the CRC calculation. The CRC domain checks all the content of the frame. The CRC domain consists of two bytes, including 16 binary bits. It is calculated by the transmitter and added to the frame. The receiver calculates the CRC of the received frame, and compares the result with the value in the received CRC domain. If the two CRC values are not equal to each other, errors occur in the transmission.

During CRC, 0xFFFF is stored first, and then a process is invoked to process a minimum of 6 contiguous bytes in the frame based on the content in the current register. CRC is valid only for the 8-bit data in each character. It is invalid for the start, stop, and check bits.

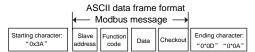
During the generation of the CRC values, the "exclusive or" (XOR) operation is performed on the each 8-bit character and the content in the register. The result is placed in the bits from the low-order bit to the high-order bit, and 0 is placed in the high-order bit. Then, the low-order bit is detected. If the low-order bit 1, the XOR operation is performed on the current value in the register and the preset value. If low-order bit is 0, no operation is performed. This process is repeated 8 times. After the last bit (8th bit) is detected and processed, the XOR operation is performed on the next 8-bit byte and the current content in the register. The final values in the register are the CRC values obtained after operations are performed on all the bytes in the frame.

The calculation adopts the international standard CRC check rule. You can refer to the related standard CRC algorithm to compile the CRC calculation program as required.

The following example is a simple CRC calculation function for your reference (using the C programming language):

unsigned int crc_cal_value(unsigned char *data_value,unsigned char data_length)

}


In the ladder logic, CKSM uses the table look-up method to calculate the CRC value according to the content in the frame. The program of this method is simple, and the calculation is fast, but the ROM space occupied is large. Use this program with caution in scenarios where there

are space occupation requirements on programs.

8.2.3 ASCII mode

Name	Definition								
	Communication p character in AS message corresp	CII: "0".	"9", "A	"" F"				0	0
Coding	Character	"0"	"1"	"2"	"3"	"4"	"5"	"6"	"7"
system	ASCII CODE	0x30	0x31	0x32	0x33	0x34	0x35	0x36	0x37
	Character	"8"	"9"	"A"	"B"	"C"	"D"	"E"	"F"
	ASCII CODE	0x38	0x39	0x41	0x42	0x43	0x44	0x45	0x46
	Starting bit, 7/8 data bit, check bit and stop bit. The data formats are listed follows. 11-bit character frame:							listed as	
Data format	Starting BIT bit 1	BIT2	BIT3 B	IT4 BI	rs Bite	BIT7	BIT 8 CI	neck bit	Stop bit
lonnat	10-bit character f	rame:							
	Starting bit BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	BIT7	Check bit	Stop bit
	· · · · · ·			•					

In ASCII mode, the frame header is ":" ("0*3A"), frame end is "CRLF" ("0*0D" "0*0A") by default. In ASCII mode, all the data bytes, except for the frame header and frame end, are transmitted in ASCII code mode, in which four MSB groups will be sent out first and then, four LSB groups will be sent out. In ASCII mode, the data length is 8 bit. As for "A"-"F", its capital letters is adopted for ASCII code. The data now adopts LRC checkout which covers slave address to data information. The checksum equals to the complement of the character sum of all the participated checkout data.

Standard structure of ASCII frame:

START	":" (0x3A)
Address Hi	Communication address:
Address Lo	8-bit address is formed by the combination of two ASCII codes
Function Hi	Function code:

Function Lo	8-bit address is formed by the combination of two ASCII codes
DATA (N-1)	Data content:
	nx8-bit data content is formed by combination of 2n (n≤16)
DATA (0)	ASCII codes
LRC CHK Hi	LRC check code:
LRC CHK Lo	8-bit check code is formed by the combination of two ASCII
	codes.
END Hi	End character:
END Lo	END Hi=CR (0x0D), END Lo=LF (0x0A)

8.2.3.1 ASCII mode check (LRC Check)

Check code (LRC Check) is the value combined of address and data content result. For instance, the check code of above 2.2.2 communication message is: 0x02+0x06+0x00+0x08+0x13+0x88=0xAB, then take the compliment of 2=0x55.

The following example is a simple LRC calculation function for your reference (using the C programming language):

Static unsigned char

LRC(auchMsg,usDataLen)

unsigned char *auchMsg;

unsigned short usDataLen;

```
{
```

unsigned char uchLRC=0;

while(usDataLen--)

```
uchLRC+=*auchMsg++;
```

```
return((unsigned char)(-((char)uchLRC)));
```

```
}
```

8.3 Command code and communication data

8.3.1 RTU mode

8.3.1.1 Command code 03H (corresponding to binary 0000 0011), read N words (Word) (N \leq 16)

Command code 03H means that if the master read data from the inverter, the reading number depends on the "data number" in the command code. The max continuous reading number is 16 and the parameter address should be continuous. The byte length of every data is 2 (one word). The following command format is illustrated by hex (a number with "H" means hex) and one hex occupies one byte.

The command code is used to read the working state of the inverter.

For example, read continuous 2 data content from 0004H from the inverter with the address of 01H (read the content of data address of 0004H and 0005H), the frame structure is as follows.

RTU master comma master to th	•	RTU slave response (sent from the inverter to the master)		
START	T1-T2-T3-T4	START	T1-T2-T3-T4	
ADDR	01H	ADDR	01H	
CMD	03H	CMD	03H	
		Byte number	04H	
MSB of the start address	00H	MSB of data in 0004H	13H	
LSB of the start address	04H	LSB of data in 0004H	88H	
MSB of data number	00H	MSB of data in 0005H	00H	
LSB of data number	02H	LSB of data in 0005H	00H	
LSB of CRC	85H	LSB of CRC CHK	7EH	
MSB of CRC	CAH	LSB of CRC CHK	9DH	
END	T1-T2-T3-T4	END	T1-T2-T3-T4	

T1-T2-T3-T4 between START and END is to provide at least the time of 3.5 bytes as the leisure time and distinguish two messages for the avoidance of taking two messages as one message.

ADDR = 01H means the command message is sent to the inverter with the address of 01H and ADDR occupies one byte

CMD=03H means the command message is sent to read data from the inverter and CMD occupies one byte

"Start address" means reading data from the address and it occupies 2 bytes with the fact that the MSB is in the front and the LSB is in the behind.

"Data number" means the reading data number with the unit of word. If the "start address" is 0004H and the "data number" is 0002H, the data of 0004H and 0005H will be read.

CRC occupies 2 bytes with the fact that the LSB is in the front and the MSB is in the behind.

The meaning of the response is that:

ADDR = 01H means the command message is transmitted by the inverter whose address is 01H. The ADDR information occupies one byte.

CMD=03H means the message is received from the inverter to the master for the response of reading command The CMD information occupies one byte.

"Byte number" means all byte number from the byte (excluding the byte) to CRC byte (excluding the byte). 04 means there are 4 byte of data from the "byte number" to "LSB of CRC CHK", which are "MSB of data in 0004H", "LSB of data in 0004H", "MSB of data in 0005H" and "LSB of data in 0005H".

There are 2 bytes stored in one data with the fact that the MSB is in the front and the LSB is in the behind of the message, the data of data address 0004H is 1388H, and the data of data address 0005H is 0000H.

CRC occupies 2 bytes with the fact that the LSB is in the front and the MSB is in the behind.

8.3.1.2 Command code 06H (corresponding to binary 0000 0110), write a word

The command means that the master write data to the inverter and one command can write one data other than multiple dates. The effect is to change the working mode of the inverter.

For example, write 5000 (1388H) to 0004H from the inverter with the address of 02H, the frame structure is as follows.

RTU master comm master to t	and (sent from the he inverter)	RTU slave response (sent from the inverter to the master)		
START	T1-T2-T3-T4	START	T1-T2-T3-T4	
ADDR	02H	ADDR	02H	
CMD	06H	CMD	06H	
MSB of data writing address	00H	MSB of data writing address	00H	
LSB of data writing address	04H	LSB of data writing address	04H	
MSB of to-be-written data	13H	MSB of to-be-written data	13H	
LSB of to-be-written data	88H	LSB of to-be-written data	88H	
LSB of CRC CHK	C5H	LSB of CRC CHK	C5H	
MSB of CRC CHK	6EH	MSB of CRC CHK	6EH	
END	T1-T2-T3-T4	END	T1-T2-T3-T4	

Note: Sections 8.3.1.1 and 8.3.1.2 mainly describe the command format.

8.3.1.3 Command code 10H, continuous writing

Command code 10H means that if the master writes data to the inverter, the data number depends on the "data number" in the command code. The max continuous reading number is 16.

For example, write 5000 (1388H) to 0004H of the inverter whose slave address is 02H and 50 (0032H) to 0005H, the frame structure is as follows.

The RTU request command is:

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
_	
ADDR	02H
CMD	10H
MSB of data writing	
address	00H
LSB of data writing address	04H
MSB of data quantity	00H
LSB of data quantity	02H
Byte number	04H
MSB of data in 0004H	13H
LSB of data in 0004H	88H
MSB of data in 0005H	00H
LSB of data in 0005H	32H
LSB of CRC	C5H
MSB of CRC	6EH
END	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)

The RTU response command is:

START	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)
ADDR	02H
CMD	10H
MSB of data writing address	00Н
LSB of data writing address	04H
MSB of data quantity	00H
LSB of data quantity	02H
LSB of CRC	C5H
MSB of CRC	6EH
END	T1-T2-T3-T4 (time gap with a min. length of 3.5 bytes)

8.3.2 ASCII mode

8.3.2.1 Command code: 03H (0000 0011), read N words (Word) (max. number for continuous reading is 16 words)

For instance: As for the inverter whose slave address is 01H, the starting address of internal storage is 0004, read two words continuously, the structure of this frame is listed as follows.

ASCII master command (sent from the master to the inverter		ASCII slave response (sent from the inverter to the master)	
START	START ":"		"."
	"0"		"0"
ADDR	"1"	ADDR	"1"
CMD	"0"	CMD	"0"
CIVID	"3"	CIVID	"3"
MSB of starting	"0"	Bute number	"0"
address	"0"	Byte number	"4"
LSB of starting	B of starting "0" MSB of data address		"1"
address	"4"	0004H	"3"
MSB of data number	"0"	LSB of data address	"8"
NISE OF GALA HUMBER	"0"	0004H	"8"
LSB of data number	"0"	MSB of data address	"0"
LSB of data number	"2"	0005H	"0"
LRC CHK Hi	"F"	LSB of data address	"0"
LRC CHK Lo	"6"	0005H	"0"
END Hi	CR	LRC CHK Hi	"5"
END Lo	LF	LRC CHK Lo	"D"
		END Hi	CR
		END Lo	LF

8.3.2.2 Command code: 06H (0000 0110), write a word (Word)

For instance: Write 5000 (1388H) to the 0004H address of the inverter whose slave address is 02H, then the structure of this frame is listed as follows.

ASCII master command (sent from the master to the inverter)		ASCII slave response (sent from the inverter to the master)	
START	"."	START	":"
ADDR	"0"	ADDR	"0"
ADDR	"2"	ADDR	"2"
CMD	"0"	CMD	"0"
	"6"	CMD	"6"
MSB of data writing	"0"	MSB of data writing	"0"
address	"0"	address	"0"
LSB of data writing	"0"	LSB of data writing	"0"
address	"4"	address	"4"
MSB of to-be-written	"1"	MSB of to-be-written	"1"
data	"3"	data	"3"

ASCII master command (sent from the master to the inverter)		ASCII slave response (sent from the inverter to the master)	
LSB of to-be-written	"8"	LSB of to-be-written	"8"
data	"8"	data	"8"
LRC CHK Hi	"5"	LRC CHK Hi	"5"
LRC CHK Lo	"9"	LRC CHK Lo	"9"
END Hi	CR	END Hi	CR
END Lo	LF	END Lo	LF

8.3.2.3 Command code: 10H, continuous writing

Command code 10H means the master write data to the inverter, the number of data being written is determined by the command "data number", the max. number of continuous writing is 16 words.

For instance: Write 5000 (1388H) to 0004H of the inverter whose slave address is 02H, write 50 (0032H) to 0005H of the inverter whose slave address is 02H, then the structure of this frame is listed as follows.

ASCII master comm master to th	•	ASCII slave response (sent from the inverter to the master)	
START	"."	START	"."
ADDR	"0"	ADDR	"0"
ADDK	"2"	ADDK	"2"
CMD	"1"	CMD	"1"
CIVID	"0"	CIVID	"0"
MSB of starting	"0"	MSB of starting	"0"
address	"0"	address	"0"
LSB of starting	"0"	LSB of starting	"0"
address	"4"	address	"4"
	"0"	MSB of data number	"0"
MSB of data number	"0"	INSB of data number	"0"
	"0"		"0"
LSB of data number	"2"	LSB of data number	"2"
D. to south an	"0"	LRC CHK Hi	"E"
Byte number	"4"	LRC CHK Lo	"8"
MSB of data to be	"1"	END Hi	CR
written to 0004H			
LSB of data to be	"3"	END Lo	LF
written to 0004H			
MSB of data to be	"8"	/	/

ASCII master comm master to th	•	ASCII slave respor inverter to t	•
written to 0005H	"8"	/	/
MSB of data to be	"0"	/	/
written to 0004H LSB of data to be written to 0004H	"0"	/	/
MSB of data to be	"3"	/	/
written to 0005H	"2"	/	/
LRC CHK Hi	"1"	/	/
LRC CHK Lo	"7"	/	/
END Hi	CR	/	/
END Lo	LF	/	/

8.4 Data address definition

This section describes the address definition of communication data. The addresses are used for controlling the running, obtaining the status information, and setting function parameters of the inverter.

8.4.1 Function code address format rules

The parameter address occupies 2 bytes with the fact that the MSB is in the front and the LSB is in the behind. The range of MSB and LSB are: MSB—00–ffH; LSB—00–ffH. The MSB is the group number before the radix point of the function code and the LSB is the number after the radix point. But both the MSB and the LSB should be changed into hex. For example P05.05, the group number before the radix point of the function code is 05, then the MSB of the parameter is 05, the number after the radix point 05, then the LSB of the parameter is 05, then under after the radix point 05, then the LSB of the parameter is 05, then the sistence of P11.01 is 0A01H.

Function code	Name	Description	Default	Modify
P11.01	Frequency decrease at sudden power loss	0: Disable 1: Enable	0	0

Note:

P29 group is the factory parameter which cannot be read or changed. Some parameters cannot be changed when the inverter is in the running state and some parameters cannot be changed in any state. The setting range, unit and related instructions should be paid attention to when modifying the function code parameters.

Besides, EEPROM is stocked frequently, which may shorten the usage time of EEPROM. For users, some functions are not necessary to be stocked on the communication mode. The needs can be met on by changing the value in RAM. Changing the MSB of the function code form 0 to 1 can also realize the function. For example, the function code P00.13 is not stocked into EEPROM. Only by changing the value in RAM can set the address to 8007H. This address can only be used in writing RAM other than reading. If it is used to read, it is an invalid address.

8.4.2 Description of other function addresses in Modbus

The master can operate on the parameters of the inverter as well as control the inverter, such as running or stopping and monitoring the working state of the inverter.

Function instruction	Address definition	Data meaning instruction	R/W characteristics	
		0001H: Forward running		
		0002H: Reverse running		
		0003H: Forward jogging		
Communication	2000H	0004H: Reverse jogging	R/W	
control command	2000⊓	0005H: Stop	R/W	
		0006H: Coast to stop		
		0007H: Fault reset		
		0008H: Jogging to stop		
	2001H	Communication setting frequency (0-		
	200111	Fmax (unit: 0.01Hz))	R/W	
	2002H	PID reference, range (0-1000, 1000		
200211		corresponds to100.0%)		
	2003H	PID feedback, range (0-1000, 1000	R/W	
200311		corresponds to100.0%)		
Address of the		Torque setting value (-3000-3000, 1000		
communication	2004H	corresponds to the 100.0% of the rated	R/W	
setting value		current of the motor)		
	2005H	The upper limit frequency setting during	R/W	
2006H		forward rotation (0–Fmax (unit: 0.01Hz))		
		The upper limit frequency setting during	R/W	
		reverse rotation (0–Fmax (unit: 0.01Hz))		
	000711	The upper limit torque of electromotion	5.44	
	2007H	torque (0–3000, 1000 corresponds to the	R/W	
		100.0% of the rated current of the motor)		

Below is the parameter list of other functions.

Function instruction	Address definition	Data meaning instruction	R/W characteristics	
		The upper limit torque of braking torque		
	2008H	(0-3000, 1000 corresponds to the	R/W	
		100.0% of the rated current of the motor)		
		Special control command word		
		Bit0-1: =00: motor 1 =01: motor 2		
		=10: motor 3 =11: motor 4		
		Bit2: =1 torque control prohibit		
		=0: torque control prohibit invalid		
	2009H	Bit3: =1 power consumption clear	R/W	
		=0: no power consumption clear		
		Bit4: =1 pre-exciting =0:		
		pre-exciting prohibition		
		Bit5: =1 DC braking =0: DC braking		
		prohibition		
	200AH	Virtual input terminal command, range: 0x000-0x1FF	R/W	
	200BH	Virtual output terminal command, range:	R/W	
	20060	0x00-0x0F	N/W	
		Voltage setting value (special for V/F		
	200CH	separation)	R/W	
200011		(0-1000, 1000 corresponds to the	1011	
		100.0% of the rated voltage of the motor)		
200DH		AO output setting 1		
		(-1000–1000, 1000 corresponds to 100.0%)	R/W	
		AO output setting 2		
	200EH	(-1000-1000, 1000 corresponds to	R/W	
		100.0%)		
		0001H: Forward running		
		0002H: Forward running		
SW 1 of the	2100H	0003H: Stop	R	
inverter	21001	0004H: Fault		
		0005H: POFF state		
	0006H: Pre-exciting state			
SW 1 of the		Bit0: =0: bus voltage is not established		
inverter	2101H	=1: bus voltage is established	R	
inverter		Bi1-2: =00: motor 1 =01: motor 2		

Function instruction	Address definition	Data meaning ins	struction	R/W characteristics
		=10: motor 3 =11: motor 4 Bit3: =0: asynchronous motor =1: synchronous motor Bit4: =0: pre-alarm without overload =1: overload pre-alarm Bit5-Bit6: =00: keypad control =01: terminal control =10: communication control		
Fault code of the inverter	2102H	See the fault type instruct	lion	R
Identifying code of the inverter	2103H	GD170-PV0x0190		R
Running frequency	3000H	0–Fmax (Unit: 0.01Hz)		R
Set frequency	3001H	0–Fmax (Unit: 0.01Hz)		R
Bus voltage	3002H	0.0–2000.0V (Unit: 0.1V)		R
Output voltage	3003H	0–1200V (Unit: 1V)		R
Output current	3004H	0.0–3000.0A (Unit: 0.1A)		R
Rotating speed	3005H	0-65535 (Unit: 1RPM)		R
Output power	3006H	-300.0–300.0% (Unit: 0.1%)	Compatible with GD series.	R
Output torque	3007H	-250.0–250.0% (Unit: 0.1%)	CHF100A, and CHV100	R
PID setting	3008H	-100.0–100.0% (Unit: 0.1%)	communication	R
PID feedback	3009H	-100.0–100.0% (Unit: 0.1%)	audiesses	R
Input state	300AH	000–1FF		
Output state	300BH	000–1FF]	
AI 1	300CH	0.00–10.00V (Unit: 0.01V)		R
AI 2	300DH	0.00–10.00V (Unit: 0.01V)		R
AI 3	300EH	-10.00–10.00V (Unit: 0.01V)		R

Function instruction	Address definition	Data meaning instruction		R/W characteristics
AI 4	300FH	Reserved		R
Read input of high-speed pulse 1	3010H	0.000–50.000kHz (Unit: 0.01Hz)		R
Read input of high-speed pulse 2	3011H	Reserved		R
PLC and current step of multi-step speed	3012H	0–15		R
External length	3013H	0–65535		R
External count value	3014H	0–65535		R
Torque setting	3015H	-300.0–300.0% (Unit: 0.1%)		R
Inverter identification code	3016H			R
Fault code	5000H			R

R/W characteristics means the function is with read and write characteristics. For example, "communication control command" is writing chrematistics and control the inverter with writing command (06H). R characteristic can only read other than write and W characteristic can only write other than read.

Note: when operating on the inverter with the table above, it is necessary to enable some parameters. For example, the operation of running and stopping, it is necessary to set P00.01 to communication running command channel.

The encoding rules for device codes (corresponding to identifying code 2103H of the inverter

MSB of code	Meaning	LSB of code	Meaning
0x01	Goodrive	000	Goodrive170-PV Series Solar
0x01	Goodiive	0x93	Pump Inverter

Note: The code is consisted of 16 bit which is high 8 bits and low 8 bits. High 8 bits mean the motor type series and low 8 bits mean the derived motor types of the series.

8.4.3 Fieldbus ratio values

The communication data is expressed by hex in actual application and there is no radix point in hex. For example, 50.12Hz cannot be expressed by hex so 50.12 can be magnified by 100

times into 5012, so hex 1394H can be used to express 50.12.

A non-integer can be timed by a multiple to get an integer and the integer can be called fieldbus ratio values.

The fieldbus ratio values are referred to the radix point of the setting range or default value in the function parameter list. If there are figures behind the radix point (n=1), then the fieldbus ratio value m is 10^n . Take the table as the example:

Function code	Name	Description	Default	Modify
P01.21	Power-off restart selection	0: Disable 1: Enable	0	0

The value specified in "Setting range" or "Default" contains one decimal, so the fieldbus scale is 10. If the value received by the upper computer is 50, the value of "Wake-up-from-sleep delay" of the inverter is 5.0 (5.0=50/10).

To set the "Wake-up-from-sleep delay" to 5.0s through Modbus communication, you need first to multiply 5.0 by 10 according to the scale to obtain an integer 50, that is, 32H in the hexadecimal form, and then transmit the following write command:

After receiving the command, the inverter converts 50 into 5.0 based on the fieldbus scale, and then sets "Wake-up-from-sleep delay" to 5.0s.

For another example, after the upper computer transmits the "Wake-up-from-sleep delay" parameter command, the master receives the following response from the inverter:

<u>01</u>	<u>03</u>	<u>02</u>	<u>00 32</u>	<u>39 91</u>
Inverter address	Read command	2-byte data	Parameters data	CRC check

The parameter data is 0032H, that is, 50, so 5.0 is obtained based on the fieldbus scale (50/10=5.0). In this case, the master identifies that the "Wake-up-from-sleep delay" is 5.0s.

8.4.4 Error message response

Operation errors may occur in communication-based control. For example, some parameters can only be read, but a write command is transmitted. In this case, the inverter returns an error message response. Error message responses are sent from the inverter to the master. The following table describes the codes and definitions of the error message responses.

Code	Name	Meaning
01H	Invalid command	 The command code received by the upper computer is not allowed to be executed. The possible causes are as follows: The function code is applicable only on new devices and is not implemented on this device. The slave is in the faulty state when processing this request.
02H	Invalid data address.	For the inverter, the data address in the request of the upper computer is not allowed. In particular, the combination of the register address and the number of the to-be-transmitted bytes is invalid.
03H	Invalid data value	The received data domain contains a value that is not allowed. The value indicates the error of the remaining structure in the combined request. Note: It does not mean that the data item submitted for storage in the register includes a value unexpected by the program.
04H	Operation failure	The parameter is set to an invalid value in the write operation. For example, a function input terminal cannot be set repeatedly.
05H	Password error	The password entered in the password verification address is different from that set in P07.00.
06H	Data frame error	The length of the data frame transmitted by the upper computer is incorrect, or in the RTU format, the value of the CRC check bit is inconsistent with the CRC value calculated by the lower computer.
07H	Parameter read-only	The parameter to be modified in the write operation of the upper computer is a read-only parameter.
08H	Parameter cannot be modified in running	The parameter to be modified in the write operation of the upper computer cannot be modified during the running of the inverter.
09H	Password protection	A user password is set, and the upper computer does not provide the password to unlock the system when performing a read or write operation. The error of "system locked" is reported.

The slave uses functional code fields and fault addresses to indicate it is a normal response or some error occurs (named as objection response). For normal responses, the slave shows corresponding function codes, digital address or sub-function codes as the response. For objection responses, the slave returns a code which equals the normal code, but the first byte is logic 1.

For example; when the master sends a message to the slave, requiring it to read a group of address data of the inverter function codes, there will be following function codes:

For normal responses, the slave responds the same codes, while for objection responses, it will return:

10000011(Hex 83H)

Besides the function codes modification for the objection fault, the slave will respond a byte of abnormal code which defines the error reason.

When the master receives the response for the objection, in a typical processing, it will send the message again or modify the corresponding order.

For example, set the "running command channel" of the inverter (P00.01, parameter address is 0001H) with the address of 01H to 03, the command is as following:

<u>01</u>	<u>06</u>	<u>00 01</u>	<u>00 03</u>	<u>98 0B</u>
Inverter address	Write command	Parameters address	Parameters data	CRC check

But the setting range of "running command channel" is 0-2, if it is set to 3, because the number is beyond the range, the inverter will return fault response message as follows.

86

Inverter Abnormal Fault code address response code

CRC check

Abnormal response code 86H means the abnormal response to writing command 06H; the fault code is 04H. In the table above, its name is operation failed and its meaning is that the parameter setting in parameter writing is invalid. For example, the function input terminal cannot be set repeatedly.

8.5 Read/Write operation example

For details about the formats of the read and write commands, see section 8.3.

8.5.1 Examples of reading command 03H

Example 1: Read the state word 1 of the inverter whose address is 01H. See 8.4.2 Description of other function addresses in Modbus, the parameter address of the state word 1 of the inverter is 2100H.

RTU mode:

The command sent to the inverter:

	<u>01</u>	<u>03</u>	<u>21 0</u>	0	<u>00 0</u> 2	<u>l</u>	<u>8E 36</u>
	Inverter address	Read command	Parame addre		Data num	iber	CRC check
If the resp	onse messa	ge is as follo	ows.				
	<u>01</u>	<u>03</u>	<u>0</u> 2	2	<u>00 03</u>		<u>F8 45</u>
	Inverter address	Read comman	Da d add	ata ress	Data conte	ent	CRC check
ASCII mo	de:						
The comn	nand sent to	the inverter:	:				
	<u>: (</u>	<u>)1 03</u>		00	<u>00 0</u> 2		
		verter Re dress comr		ameters Idress	Data number	LRC chec	
If the operation is successful, the following response is returned:							
	÷	<u>01</u>	<u>03</u>	<u>02</u>	<u>00 03</u>	<u>F7</u>	<u>CR LF</u>
	START	Inverter address o	Read command	Byte number	Data content	LRC check	END

The data content is 0003H. From the table 1, the inverter stops.

8.5.2 Examples of writing command 06H

Example 1: Set the inverter whose address is 03H to be forward running. See 8.4.2 Description of other function addresses in Modbus, the address of "Communication control command" is 2000H, and 0001H indicates forward running.

Function instruction	Address definition	Data meaning instruction	R/W characteristics
		0001H: Forward running	
		0002H: Reverse running	
Communication	2000H	0003H: Forward jogging	
Communication control command		0004H: Reverse jogging	R/W
		0005H: Stop	R/VV
		0006H: Coast to stop (emergency stop)	
		0007H: Fault reset	
		0008H: Jogging to stop	

RTU mode:

The command sent by the master:

<u>03</u>	<u>06</u>	<u>20 00</u>	<u>00 01</u>	<u>42 28</u>
Inverter address	Write command	Parameters address	Forward running	CRC check

If the operation is successful, the following response (same as the command transmitted from the master) is returned:

03

address

06 Write

20 00 Parameters address

Forward running

00 01

42 28 CRC check

ASCII mode:

The command sent to the inverter:

<u>:</u>	<u>01</u>	<u>06</u>	<u>20 00</u>	<u>00 01</u>	<u>D6</u>	<u>CR LF</u>
START	Inverter address	Write command	Parameters address	Data number	LRC check	END

If the operation is successful, the following response (same as the command transmitted from the master) is returned:

<u>:</u>	<u>01</u>	<u>06</u>	<u>20 00</u>	<u>00 01</u>	<u>D6</u>	<u>CR LF</u>
START	Inverter address		Parameters address	Data number	LRC check	END

Example 2: set the max output frequency of the inverter with the address of 03H as 100Hz.

Function code	Name	Description	Default	Modify
P00.03	Max. output frequency	Used to set the max. output frequency of the inverter. It is the basis of frequency setup and the acceleration/deceleration. Setting range: P00.04–400.00Hz		٥

See the figures behind the radix point, the fieldbus ratio value of max. output frequency (P00.03) is 100. 100Hz timed by 100 is 10000 and the corresponding hex is 2710H.

RTU mode:

The command sent by the master:

-	-
n	- X
U	

Inverter address Write Parameters

06

command

Write

command

00 03 27 10 62 14

Parameter data CRC check

If the operation is successful, the following response (same as the command transmitted from the master) is returned:

address

Parameters

address

03

06 00 03 27 10

Parameter data

62 14 CRC check

Inverter address

ASCII mode:

The command sent to the inverter:

BD CR LF 00 03 27 10 06 ÷ Parameters Invortor Write Parameter I RC START END address command address data check

If the operation is successful, the following response (same as the command transmitted from the master) is returned:

> 2 START

06 Write Parame

06	00	03	21	10
Write	Para	ameters	Para	meter
command	l ac	Idress	da	ata

LRC data

END check

BD CR LF

8.5.3 Examples of continuous writing command10H

address

Example 1: Set the inverter whose address is 01H to be forward running at the frequency of 10Hz. See 8.4.2 Description of other function addresses in Modbus, the address of "Communication control command" is 2000H, and 0001H indicates forward running. The address of "Communication frequency setting" is 2001H, and 10 Hz is 03E8H in the hexadecimal form.

Function instruction	Address definition	Data meaning instruction	R/W characteristics	
		0001H: Forward running		
		0002H: Reverse running		
Communication control		0003H: Forward jogging		
		0004H: Reverse jogging	DAA	
		0005H: Stop	R/W	
command		0006H: Coast to stop (emergency stop)		
		0007H: Fault reset		
		0008H: Jogging to stop		

Function instruction	Address definition	Data meaning instruction	R/W characteristics
Address of communication	2001H	Communication setting frequency (0–Fmax (unit: 0.01Hz))	R/W
setting	2002H	PID given, range (0–1000, 1000 corresponds to100.0%)	R/W

RTU mode:

The command sent to the inverter:

<u>01</u>	<u>10</u>	<u>20 00</u>	<u>00 02</u>	<u>04</u>	<u>00 01 (</u>	<u>)3 E8</u>	<u>3B 10</u>
Inverter address	Continuous writing command	Parameters address	Data number	Byte number	Forward running	10Hz	CRC check

If the operation is successful, the following response is returned:

<u>01</u>	<u>10</u>	<u>20 00</u>	<u>00 02</u>	<u>4A 08</u>
Inverter address	Continuous writing command	Parameters address	Data number	CRC check

ASCII mode:

The command sent to the inverter:

<u>:</u>	<u>01</u>	<u>10</u>	<u>20 00 </u>	00 02	<u>04</u>	<u>00 01 03 E8</u>	<u>BD</u>	<u>CR LF</u>
START	Inverter address	Continuous writing command	Parameters address	Data number	Byte number	Forward running	LRC check	END

If the operation is successful, the following response is returned:

<u>:</u>	<u>01</u>	<u>10</u>	<u>20 00</u>	<u>00 02</u>	<u>CD</u>	<u>CR LF</u>
START	Inverter address	Continuous writing command	Parameters address	Data number	LRC check	END

Example 2: Set ACC time of 01H inverter as 10s and DEC time as 20s.

P00.11	ACC time 1	Setting range of P00.11 and P00.12:	Depend on model	0
P00.12	DEC time 1	0.0-3600.0s	Depend on model	0

The corresponding address of P00.11 is 000B, the ACC time of 10s corresponds to 0064H, and the DEC time of 20s corresponds to 00C8H.

RTU mode:

The command sent to the inverter:

<u>01</u>	<u>10</u>	<u>00 0B</u>	<u>00 02</u>	<u>04</u>	<u>00 64</u>	<u>00 C8</u>	<u>F2 55</u>
Inverter address	Continuous writing	Parameters address	Data number	Byte number	10s	20s	CRC check

If the operation is successful, the following response is returned:

<u>01</u>	<u>10</u>	<u>00 0B</u>	<u>00 02</u>	<u>30 0A</u>
Inverter address	Continuous writing command	Parameters address	Data number	CRC check

ASCII mode:

The command sent to the inverter:

÷	<u>01</u>	<u>10</u>	<u>00 0B</u>	00 02	<u>04</u>	<u>)0 64</u>	<u>00 C</u>	<u>8 B2</u>	<u>CR LF</u>
START	Inverter address	Continuous writing command	Parameters address	Data number	Number of bytes	10s	20s	LRC check	END

If the operation is successful, the following response is returned:

Note: The blank in the above command is for illustration. The blank cannot be added in the actual application unless the upper monitor can remove the blank by themselves.

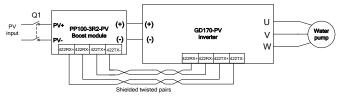
8.6 Common communication faults

Common communication faults include the following:

- ♦ No response is returned.
- The inverter returns an exception response.

Possible causes of no response include the following:

- The serial port is set incorrectly. For example, the converter uses the serial port COM1, but COM2 is selected for the communication
- The settings of the baud rates, data bits, stop bits, and check bits are inconsistent with those set on the inverter.
- The positive pole (+) and negative pole (-) of the RS485 bus are connected reversely.
- The RS485 wire cap on the terminal board of the inverter is not connected. This wire cap is at the back of the terminal block.


Appendix A Options

A.1 Boost module

The pump inverters of 2.2kW support an optional boost module (PP100-3R2-PV) to improve the utilization ratio of the PV cell module. The figure below shows the wiring method.

- Connect PV+ and PV- of the boost module to positive and negative input terminals of the PV cell module respectively.
- Connect output terminals (+) and (-) of the boost module to input terminals (+) and (-)
 of the pump inverter respectively.
- Connect 422-communication receiving terminal RX of the boost module to 422-communication sending terminal TX of the pump inverter, connect 422-communication sending terminal TX of the boost module to 422-communication receiving terminal RX of the pump inverter, and use two sets of twisted pairs for wiring.
- Ensure that the wiring is connected properly, and switch on the breaker Q1 at the DC side for automotive running.

Figure A-1 Connection between the boost module and the inverter

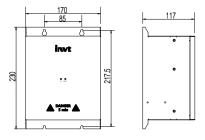
Boost module specifications:

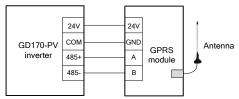
Model	PP100-3R2-PV					
Input side						
Max. input power (W)	3200					
Max. DC voltage (V)	600					
Start voltage (V)	80					
Min. working voltage (V)	70					
Max. input current (A)	12					
Output side						
Output voltage (V)	380V inverter: 570					

Status indicator description:

Displayed status	Description
Green LED flickering	The boost module has been powered on, and the control circuit is working.
Green LED normally on	The boost module is running.
Red LED on	The boost module is faulty.

The following figure shows the installation dimension drawing of the boost module.




Figure A-2 Installation dimensions of the boost module

A.2 GPRS module and monitoring app

The pump inverter supports an optional GPRS module to implement remote monitoring, and the GPRS module connects to the inverter through RS485 communication. The running state of the inverter can be monitored in real time on the APP in the mobile phone or web page.

Method for connecting the GPRS module to the inverter:

Figure A-3 Connection between the GPRS module and the inverter

For details, see the *GPRS/GPS Adaptor Operation Manual* which comes with the GPRS module or contact the local INVT office. Provide the model and serial number of the product you query about.

A.3 Cable

A.3.1 Powe cable

The sizes of the input power cables and motor cables must comply with local regulations.

Note: If the electrical conductivity of the motor cable shield layer does not meet the requirements, a separate PE conductor must be used.

A.3.2 Control cable

A relay cable needs to carry the metal braided shield layer.

Keypads need to be connected by using network cables. In complicated electromagnetic environments, shielded network cables are recommended.

A shielded twisted-pair cable is recommended for a communication cable.

Note:

- Analog signals and digital signals cannot share a same cable, and their cables must be routed separately.
- Before connecting the input power cable of the inverter, check the insulation conditions of the cable according to local regulations.

Recommended power cable sizes for standard inverter models:

Inverter model	Recommended cable size (mm ²)		Terminal	Tightening
inverter model	(+)/(-), R/S/T, U/V/W	PE	screw	torque (Nm)
GD170-0R4-S2-PV	1.5	1.5	M4	0.8
GD170-0R7-S2-PV	1.5	1.5	M4	0.8
GD170-0R4-SS2-PV	1.5	1.5	M4	0.8
GD170-0R7-4-PV	1.5	1.5	M4	0.8
GD170-1R5-4-PV	1.5	1.5	M4	0.8
GD170-2R2-4-PV	1.5	1.5	M4	0.8
GD170-1R5-S2-PV	2.5	2.5	M4	0.8
GD170-2R2-S2-PV	2.5	2.5	M4	0.8
GD170-0R7-SS2-PV	2.5	2.5	M4	0.8
GD170-1R5-SS2-PV	2.5	2.5	M4	0.8
GD170-2R2-SS2-PV	2.5	2.5	M4	0.8
GD170-004-4-PV	2.5	2.5	M4	1.2–1.5
GD170-5R5-4-PV	2.5	2.5	M4	1.2–1.5
GD170-1R5-2-PV	2.5	2.5	M4	1.2–1.5

luventen medel	Recommended cable size (mm ²)		Terminal	Tightening
Inverter model	(+)/(-), R/S/T, U/V/W	PE	screw	torque (Nm)
GD170-2R2-2-PV	2.5	2.5	M4	1.2–1.5
GD170-7R5-4-PV	4	4	M5	2–2.5
GD170-004-2-PV	4	4	M5	2–2.5
GD170-011-4-PV	6	6	M5	2–2.5
GD170-5R5-2-PV	6	6	M5	2-2.5
GD170-015-4-PV	10	10	M5	2-2.5
GD170-7R5-2-PV	10	10	M5	2–2.5
GD170-018-4-PV	16	16	M5	2–2.5
GD170-022-4-PV	25	16	M5	2–2.5
GD170-030-4-PV	25	16	M6	4–6
GD170-037-4-PV	35	16	M6	4–6
GD170-045-4-PV	35	16	M8	10
GD170-055-4-PV	50	25	M8	10
GD170-075-4-PV	70	35	M8	10
GD170-090-4-PV	95	50	M12	31–40
GD170-110-4-PV	120	70	M12	31–40
GD170-132-4-PV	185	95	M12	31–40
GD170-160-4-PV	240	95	M12	31–40
GD170-185-4-PV	120*2P	150	M12	31–40
GD170-200-4-PV	120*2P	150	M12	31–40
GD170-220-4-PV	95*2P	95	M12	31–40
GD170-250-4-PV	95*2P	95	M12	31–40
GD170-280-4-PV	150*2P	150	M12	31–40
GD170-315-4-PV	150*2P	150	M12	31–40
GD170-355-4-PV	185*2P	185	M12	31–40
GD170-400-4-PV	150*3P	120*2P	M12	31–40
GD170-450-4-PV	185*3P	120*2P	M12	31–40
GD170-500-4-PV	185*3P	120*2P	M12	31–40

Note:

- The cables recommended for the main circuit can be used in scenarios where the ambient temperature is lower than 40°C, the wiring distance is shorter than 100 m, and the current is the rated current.
- If a control cable and power cable must cross each other, ensure that the angle between them is 90 degrees.
- If the inside of motor is moist, the insulation resistance is reduced. If you suspect the
 inside of motor is moist, dry and re-measure the motor.

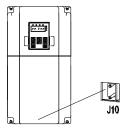
A.4 Reactor

When the distance between the inverter and motor is longer than 50 m, the parasitic capacitance between the long cable and ground may cause large leakage current, and overcurrent protection of the inverter may be frequently triggered. To prevent this from happening and avoid damage to the motor insulator, compensation must be made by adding an output reactor. When the inverter is used to drive multiple motors, take the total length of the motor cables (that is, sum of the lengths of the motor cables) into account. When the total length is longer than 50 m, an output reactor must be added on the output side of the inverter. When the distance between the inverter and motor ranges from 50 m to 150 m, select the reactor according to the following table. If the distance is longer than 150 m, contact INVT's technical support technicians.

Inverter model	Output reactor
GD170-1R5-2-PV	OCL2-004-4
GD170-2R2-2-PV	OCL2-004-4
GD170-004-2-PV	OCL2-5R5-4
GD170-5R5-2-PV	OCL2-7R5-4
GD170-7R5-2-PV	OCL2-015-4
GD170-0R7-4-PV	OCL2-1R5-4
GD170-1R5-4-PV	OCL2-1R5-4
GD170-2R2-4-PV	OCL2-2R2-4
GD170-004-4-PV	OCL2-004-4
GD170-5R5-4-PV	OCL2-5R5-4
GD170-7R5-4-PV	OCL2-7R5-4
GD170-011-4-PV	OCL2-011-4
GD170-015-4-PV	OCL2-015-4
GD170-018-4-PV	OCL2-018-4
GD170-022-4-PV	OCL2-022-4
GD170-030-4-PV	OCL2-037-4
GD170-037-4-PV	OCL2-037-4
GD170-045-4-PV	OCL2-045-4
GD170-055-4-PV	OCL2-055-4
GD170-075-4-PV	OCL2-075-4
GD170-090-4-PV	OCL2-110-4
GD170-110-4-PV	OCL2-110-4
GD170-132-4-PV	OCL2-160-4
GD170-160-4-PV	OCL2-200-4

Output reactor model selection:

Inverter model	Output reactor
GD170-185-4-PV	OCL2-200-4
GD170-200-4-PV	OCL2-200-4
GD170-220-4-PV	OCL2-280-4
GD170-250-4-PV	OCL2-280-4
GD170-280-4-PV	OCL2-350-4
GD170-315-4-PV	OCL2-350-4
GD170-355-4-PV	OCL2-400-4
GD170-400-4-PV	OCL2-400-4
GD170-450-4-PV	OCL2-500-4
GD170-500-4-PV	OCL2-500-4


Note:

- The rated output voltage drop of output reactors is 1%±15%.
- All the options in the preceding table are externally configured. You need to specify
 whether the options are externally configured in your purchase order.

A.5 Filter

Goodrive170-PV series inverters of \geq 5.5kW contain built-in C3 filters. You can use the jumper J10 to determine whether to connect it.

Connection method: Open the lower cover, find the location of J10, and insert the jumper terminals delivered with the inverter.

Note: The input EMI meets the C3 requirements after a filter is configured.

Appendix B Recommended solar module configuration

B.1 Recommended solar module configuration for solar pump inverters

	Open-circuit voltage class of solar module			
Solar numn inverter	37±1V		45±1V	
Solar pump inverter model	Module power ± 5Wp	Modules per string * Strings	Module power ± 5Wp	Modules per string * Strings
GD170-0R4-SS2-PV	250	11*1	300	9*1
GD170-0R7-SS2-PV	250	11*1	300	9*1
GD170-1R5-SS2-PV	250	11*1	300	9*1
GD170-2R2-SS2-PV	250	11*1	300	9*1
GD170-0R4-S2-PV	250	11*1	300	9*1
GD170-0R7-S2-PV	250	11*1	300	9*1
GD170-1R5-S2-PV	250	11*1	300	9*1
GD170-2R2-S2-PV	250	11*1	300	9*1
GD170-1R5-2-PV	250	11*1	300	9*1
GD170-2R2-2-PV	250	11*1	300	9*1
GD170-004-2-PV	250	11*2	300	9*2
GD170-5R5-2-PV	250	11*3	300	9*3
GD170-7R5-2-PV	250	11*4	300	9*4
GD170-0R7-4-PV	250	18*1	300	15*1
GD170-1R5-4-PV	250	18*1	300	15*1
GD170-2R2-4-PV	250	18*1	300	15*1
GD170-004-4-PV	250	20*1	300	16*1
GD170-5R5-4-PV	250	18*2	300	15*2
GD170-7R5-4-PV	250	18*2	300	15*2
GD170-011-4-PV	250	18*3	300	15*3
GD170-015-4-PV	250	18*4	300	15*4
GD170-018-4-PV	250	18*5	300	15*5
GD170-022-4-PV	250	18*6	300	15*6
GD170-030-4-PV	250	18*8	300	15*8
GD170-037-4-PV	250	18*9	300	15*9
GD170-045-4-PV	250	18*11	300	15*11
GD170-055-4-PV	250	18*14	300	15*14
GD170-075-4-PV	250	18*19	300	15*19
GD170-090-4-PV	250	18*22	300	15*22

Recommended solar module configuration

	Open-circuit voltage class of solar module									
Solar pump inverter	37±1\	/	45±1V							
model	Module power ± 5Wp	Modules per string * Strings	Module power ± 5Wp	Modules per string * Strings						
GD170-110-4-PV	250	18*27	300	15*27						
GD170-132-4-PV	250	18*38	300	15*38						
GD170-160-4-PV	250	18*46	300	15*46						
GD170-185-4-PV	250	18*53	300	15*53						
GD170-200-4-PV	250	18*57	300	15*57						
GD170-220-4-PV	250	18*63	300	15*63						
GD170-250-4-PV	250	18*72	300	15*72						
GD170-280-4-PV	250	18*81	300	15*81						
GD170-315-4-PV	250	18*91	300	15*91						
GD170-355-4-PV	250	18*103	300	15*103						
GD170-400-4-PV	250	18*116	300	15*116						
GD170-450-4-PV	250	18*130	300	15*130						
GD170-500-4-PV	250	18*145	300	15*145						

B.2 Recommended solar module configuration for inverters with boost module

	Max. DC	Open-circuit voltage class of solar module							
PP100-3R2-PV	input current	37:	±1V	45±1V					
+ Solar pump inverter	(A)	Module power ± 5Wp	Modules per string * Strings	Module power ± 5Wp	Modules per string * Strings				
GD170-0R4-SS2-PV	12	250	4*1	300	3*1				
GD170-0R7-SS2-PV	12	250	5*1	300	4*1				
GD170-1R5-SS2-PV	12	250	8*1	300	7*1				
GD170-0R4-S2-PV	12	250	4*1	300	3*1				
GD170-0R7-S2-PV	12	250	5*1	300	4*1				
GD170-1R5-S2-PV	12	250	8*1	300	7*1				
GD170-1R5-2-PV	12	250	8*1	300	7*1				
GD170-2R2-2-PV	12	250	13*1	300	11*1				
GD170-0R7-4-PV	12	250	5*1	300	4*1				
GD170-1R5-4-PV	12	250	8*1	300	7*1				
GD170-2R2-4-PV	12	250	13*1	300	11*1				

Appendix C Power frequency & PV switching solution

C.1 Solution introduction

Generally, inverters do not allow simultaneous connection of power frequency and PV. If such simultaneous connection is required, switching control circuit needs to be configured externally. The following figure shows a solution for reference.

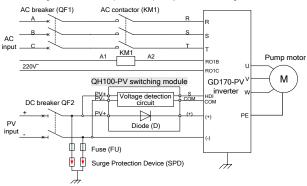
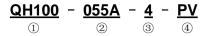



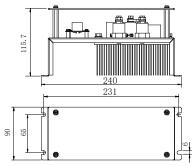
Figure C-1 Inverter power frequency & PV switching solution

See section C.1.1 QH100-PV switching module for specifications and model selection of QH100-PV switching module, whose necessary low-voltage apparatuses include QF1, KM1, QF2, FU, and SPD. See section C.1.2 Model selection reference for low-voltage apparatuses for model selection information.

C.1.1 QH100-PV switching module

C.1.1.1 Model and specification

Field	Sign	Description	Content					
Product series		Product series	QH100 series power frequency & PV					
abbreviation	1	abbreviation	switching module					
Bata Jammara (Power range for	055A—applies to inverters of ≤15kW					
Rated current	2	adaptive inverter	110A—applies to inverters of 18.5–37kW					


Field	Sign	Description	Content				
Voltage class	3	Voltage class	4: AC 3PH 380V(-15%)-440(+10%)				
Code	4	Industry code	PV: Photovoltaic water pump series products				

C.1.1.2 Terminal description of QH100-PV switching module

Terminal symbol	Terminal name	Terminal function description						
PV +	PV input	Voltage detection board input, connecting to anode of PV input.						
PV -	PV input	Voltage detection board input, connecting to cathode of PV input.						
(+)	Switching module output	Cathode of diode module, connecting to (+) of the inverter.						
S, COM	Voltage detection signal	ON/OFF signal, corresponding PV voltage greater/less than preset threshold, connecting to terminals HDI and COM of the inverter.						

C.1.1.3 Installation and dimension

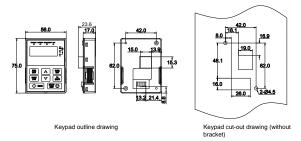
Figure C-2 Installation dimensions of the switching module (unit: mm)

Note: To ensure reliable operation of this product, external ventilation and heat dissipation measures are required.

C.1.2 Model selection reference for low-voltage apparatuses

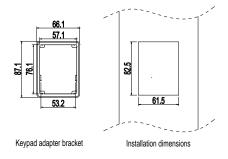
Inverter model	AC breaker (A)	DC Breaker	AC Contactor (A)	SPD	Fuse	Diode I _{FAV} /V _{RR}
GD170-0R4-S2-PV-AS	16		16			
GD170-0R7-S2-PV-AS	16		16			
GD170-0R4-SS2-PV-AS	16		16			
GD170-1R5-2-PV-AS	16		16			
GD170-1R5-S2-PV-AS	25		25			
GD170-0R7-SS2-PV-AS	16	404/	16			25A/
GD170-2R2-S2-PV-AS	40	16A/ 1000VDC	40			1600V
GD170-1R5-SS2-PV-AS	25	1000000	25			
GD170-2R2-SS2-PV-AS	40		40			
GD170-0R7-4-PV-AS	10		12	Tune II	30A	
GD170-1R5-4-PV-AS	10		12	Type II, 1000VDC	fast	
GD170-2R2-4-PV-AS	10		12	1000000	fuse	
GD170-004-4-PV-AS	25		25			
GD170-5R5-4-PV-AS	25		25			
GD170-2R2-2-PV-AS	25	25A/	25			
GD170-004-2-PV-AS	25	1000VDC	25			FF A (
GD170-7R5-4-PV-AS	40		40			55A/ 1600V
GD170-5R5-2-PV-AS	40		40			
GD170-011-4-PV-AS	50	63A/	50			
GD170-7R5-2-PV-AS	50	1000VDC	50			
GD170-015-4-PV-AS	63		63			
GD170-018-4-PV-AS	63	4004/	63			
GD170-022-4-PV-AS	100	100A/ 1000VDC	95			1104/
GD170-030-4-PV-AS	100	TOUDVDC	95			110A/ 1600V
GD170-037-4-PV-AS	125	125A/ 1000VDC	115			10000
GD170-045-4-PV-AS	200	160A/ 1000VDC	170	Type II,	30A	160A/ 1600V
GD170-055-4-PV-AS	200	250A/	170	1000VDC	fast	250A/
GD170-075-4-PV-AS	250	1000VDC	205		fuse	1600V
GD170-090-4-PV-AS	315	350A/	245			350A/
GD170-110-4-PV-AS	350	1000VDC	265			1600V
GD170-132-4-PV-AS	350	400A/ 1000VDC	330			400A/ 1600V
GD170-160-4-PV-AS	400	550A/	400			550A/

Inverter model	AC breaker (A)	DC Breaker	AC Contactor (A)	SPD	Fuse	Diode I _{FAV} /V _{RR}
GD170-185-4-PV-AS	500	1000VDC	500			1600V
GD170-200-4-PV-AS	500	600A/ 1000VDC	500			600A/ 1600V
GD170-220-4-PV-AS	630	630A/	630			630A/
GD170-250-4-PV-AS	030	1000VDC	630			1000V
GD170-280-4-PV-AS	800	800A/	800			800A/
GD170-315-4-PV-AS	000	1000VDC	800			1000V
GD170-355-4-PV-AS	1000	1000A/	1000			1000A/
GD170-400-4-PV-AS	1000	1000VDC	1000			1000V
GD170-450-4-PV-AS	1250	1250A/	1250			1250A/
GD170-500-4-PV-AS	1250	1000VDC	1250			1000V


C.2 Parameter setting method

Connect the external PV voltage detection signal to HDI terminal (auto switching by default), and the PV voltage detection threshold is 300V.

After the correct connection, set P15.32 to 0.


Appendix D Dimension drawings

D.1 External keypad structure

Note: The inverter models of 380V 4kW and lower support an optional extermal keypad, and the keypad of inverter models of 380V 5.5kW and higher can be installed on another device.

If the keypad is externally installed on an optional bracket, it can be 20 meters away from the inverter at most.

D.2 Dimensions of 0.4-4 kW models

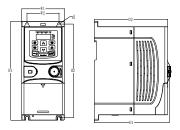


Figure D-1 Wall mounting

Table D-1 Wall-mounting dimensions (unit: mm)

							Installation
Model	W1	W2	H1	H2	D1	D2	hole
							diameter (d)
GD170-0R4-S2-PV	80.0	60.0	160.0	150.0	123.5	120.3	Ø 5
GD170-0R7-S2-PV	80.0	60.0	160.0	150.0	123.5	120.3	Ø 5
GD170-0R4-SS2-PV	80.0	60.0	160.0	150.0	123.5	120.3	Ø 5
GD170-1R5-S2-PV	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5
GD170-2R2-S2-PV	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5
GD170-0R7-SS2-PV	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5
GD170-1R5-SS2-PV	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5
GD170-2R2-SS2-PV	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5
GD170-0R7-4-PV	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5
GD170-1R5-4-PV	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5
GD170-2R2-4-PV	80.0	60.0	185.0	175.0	140.5	137.3	Ø 5
GD170-004-4-PV	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5

Figure D-2 Rail mounting

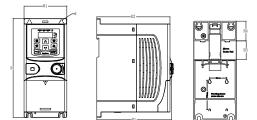


Table D-2 Rail-mounting dimensions (unit: mm)

Model	W1	H1	H3	H4	D1	D2	Installation hole diameter (d)
GD170-0R4-S2-PV	80.0	160.0	35.4	36.6	123.5	120.3	Ø 5
GD170-0R7-S2-PV	80.0	160.0	35.4	36.6	123.5	120.3	Ø 5
GD170-0R4-SS2-PV	80.0	160.0	35.4	36.6	123.5	120.3	Ø 5
GD170-1R5-S2-PV	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5
GD170-2R2-S2-PV	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5
GD170-0R7-SS2-PV	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5
GD170-1R5-SS2-PV	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5
GD170-2R2-SS2-PV	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5
GD170-0R7-4-PV	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5
GD170-1R5-4-PV	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5
GD170-2R2-4-PV	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5
GD170-004-4-PV	80.0	185.0	35.4	36.6	140.5	137.3	Ø 5

D.3 Dimensions of 5.5–500kW models

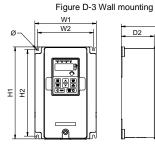


Table D-3 Wall-mounting dimensions (unit: mm)

Model	W1	W2	H1	H2	D1	D2	Installation hole diameter
GD170-1R5-2-PV	146.0	131.0	256.0	243.5	167.0	84.5	Ø 6
GD170-2R2-2-PV	146.0	131.0	256.0	243.5	167.0	84.5	Ø 6
GD170-5R5-4-PV	146.0	131.0	256.0	243.5	167.0	84.5	Ø6
GD170-7R5-4-PV	170.0	151.0	320.0	303.5	196.3	113.0	Ø 6
GD170-011-4-PV	170.0	151.0	320.0	303.5	196.3	113.0	Ø 6
GD170-015-4-PV	170.0	151.0	320.0	303.5	196.3	113.0	Ø6
GD170-004-2-PV	170.0	151.0	320.0	303.5	196.3	113.0	Ø6
GD170-5R5-2-PV	170.0	151.0	320.0	303.5	196.3	113.0	Ø6
GD170-7R5-2-PV	170.0	151.0	320.0	303.5	196.3	113.0	Ø6
GD170-011-4-PV	170.0	151.0	320.0	303.5	196.3	113.0	Ø6
GD170-015-4-PV	170.0	151.0	320.0	303.5	196.3	113.0	Ø 6
GD170-018-4-PV	170.0	151.0	320.0	303.5	196.3	113.0	Ø6
GD170-022-4-PV	200.0	185.0	340.6	328.6	184.3	104.5	Ø6
GD170-03-4-PV	200.0	185.0	340.6	328.6	184.3	104.5	Ø6
GD170-037-4-PV	250.0	230.0	400.0	380.0	202.0	123.5	Ø6
GD170-045-4-PV	250.0	230.0	400.0	380.0	202.0	123.5	Ø6
GD170-055-4-PV	282.0	160.0	560.0	542.4	238.0	138.0	Ø9
GD170-075-4-PV	282.0	160.0	560.0	542.4	238.0	138.0	Ø 9
GD170-090-4-PV	338.0	200.0	554.0	534.0	326.2	/	Ø 9.5
GD170-110-4-PV	338.0	200.0	554.0	534.0	326.2	/	Ø 9.5
GD170-132-4-PV	500.0	360.0	870.0	850.0	360.0	/	Ø 11

Model	W 1	W2	H1	H2	D1	D2	Installation hole diameter
GD170-160-4-PV	500.0	360.0	870.0	850.0	360.0	/	Ø 11
GD170-185-4-PV	500.0	360.0	870.0	850.0	360.0	/	Ø 11
GD170-200-4-PV	500.0	360.0	870.0	850.0	360.0	/	Ø 11

Figure D-4 Flange mounting

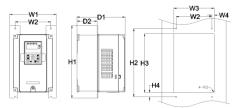


Table D-4 Flange-mounting dimensions (unit: mm)

Model	W1	W2	W3	W4	H1	H2	H3	H4	D1	D2	Install ation hole diame ter	spe cific
GD170-5R5-4-PV	170.2	131	150	9.5	292	276	260	6	167	84.5	Ø 6	M5
GD170-7R5-4-PV	170.2	131	150	9.5	292	276	260	6	167	84.5	Ø 6	M5
GD170-011-4-PV	191.2	151	174	11.5	370	351	324	12	196.3	113	Ø 6	M5
GD170-015-4-PV	191.2	151	174	11.5	370	351	324	12	196.3	113	Ø 6	M5
GD170-1R5-2-PV	170.2	131	150	9.5	292	276	260	6	167	84.5	Ø 6	M5
GD170-2R2-2-PV	170.2	131	150	9.5	292	276	260	6	167	84.5	Ø 6	M5
GD170-004-2-PV	191.2	151	174	11.5	370	351	324	12	196.3	113	Ø 6	M5
GD170-5R5-2-PV	191.2	151	174	11.5	370	351	324	12	196.3	113	Ø 6	M5
GD170-7R5-2-PV	191.2	151	174	11.5	370	351	324	12	196.3	113	Ø 6	M5
GD170-018-4-PV	191.2	151	174	11.5	370	351	324	12	196.3	113	Ø 6	M5
GD170-022-4-PV	266	250	224	13	371	250	350. 6	20.3	184.6	104	Ø 6	M5
GD170-030-4-PV	266	250	224	13	371	250	350. 6	20.3	184.6	104	Ø 6	M5

Model	W1	W2	W3	W4	H1	H2	НЗ	H4	D1	D2	Install ation hole diame ter	spe cific
GD170-037-4-PV	316	300	274	13	430	300	410	55	202	118.3	Ø 6	M5
GD170-045-4-PV	316	300	274	13	430	300	410	55	202	118.3	Ø 6	M5
GD170-055-4-PV	352	332	306	13	580	400	570	80	238	133.8	Ø 9	M8
GD170-075-4-PV	352	332	306	13	580	400	570	80	238	133.8	Ø 9	M8
GD170-090-4-PV	418.5	361	389. 5	14.2	600	559	370	108. 5	329.5	149.5	Ø9.5	M8
GD170-110-4-PV	418.5	361	389. 5	14.2	600	559	370	108. 5	329.5	149.5	Ø9.5	M8
GD170-132-4-PV	500	360	480	60	870	850	796	37	358	178.5	Ø 11	M10
GD170-160-4-PV	500	360	480	60	870	850	796	37	358	178.5	Ø 11	M10
GD170-185-4-PV	500	360	480	60	870	850	796	37	358	178.5	Ø 11	M10
GD170-200-4-PV	500	360	480	60	870	850	796	37	358	178.5	Ø 11	M10

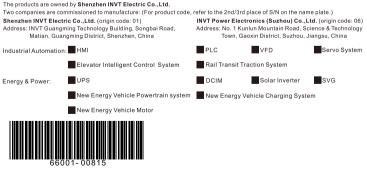
Note: The flange mounting plate shall be used for flange mounting.

Appendix E Further information

E.1 Product and service queries

If you have any queries about the product, contact the local INVT office. Please provide the model and serial number of the product you query about. You can visit <u>www.invt.com.cn</u> to find a list of INVT offices.

E.2 Feedback on INVT inverter manuals


Your comments on our manuals are welcome.Visit <u>www.invt.com.cn</u>, directly contact online service personnel or choose **Contact Us** to obtain contact information.

E.3 Documents on the Internet

You can find manuals and other product documents in the PDF format on the Internet. Visit <u>www.invt.com.cn</u>, and choose **Support** > **Download**.

Service line: 86-755-23535967 E-mail: overseas@invt.com.cn Website: www.invt.com

Copyright© INVT.

Manual information may be subject to change without prior notice.